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ABSTRACT 
This paper proposes an efficient algorithm for blind source 
separation (BSS) of mixture of speech signals.  Conventional 
on-line algorithms for blind separation usually assume that the 
sources are iid or linear processes.   Since however speech 
signals have strong nonlinearity, those algorithms are not 
efficient with respect to convergence and sometimes induce 
instability.  In order to solve these issues we introduce a more 
suitable probabilistic model for speech signals, namely, a speech 
signal is modeled as an amplitude modulation of a stationary 
random process.  Based on the model, a new BSS algorithm is 
derived.  A couple of examples reveal that the proposed 
algorithm determines a desired separator within a considerably 
short time.  

1. INTRODUCTION 

Blind source separation (BSS) or independent component 
analysis has been attracting a great deal of attention as a new 
topic of signal processing.  It is a technique that separates a set of 
source signals from their mixtures observed by (at least) the same 
number of sensors as the sources.  If the transfer function 
(matrix) of the mixing process is known beforehand, then the 
source signals can be recovered by applying its inverse to the 
observed signals, of course.  The difficulty of BSS exists in the 
restriction that the mixing process must be identified from the 
observed signals only. 

Recently, some algorithms efficient with respect to computing 
time have been proposed, but almost all of them are off-line.  In 
many actual applications of BSS, adaptive processing is 
indispensable, but on-line algorithms proposed so far usually 
need an unendurably large number of iteration steps, particularly 
for convolutive mixture of sources.  

A basic approach of BSS is as follows.  Let qi be a certain 
statistical model of the i-th source signal.  Then the separator is 
determined such that the separator's outputs not only be mutually 
independent but also each of them has a distribution as close as 
possible to qi.  A foremost problem in this approach is how to 
choose a model qi for each source.  Inappropriate choice of qi 
may cause slow convergence and moreover instability in the 
execution of on-line computation.  Choice of qi is task-dependent, 
of course.  This paper proposes an efficient adaptive BSS 

algorithm for mixture of speech signals, but it can be applied to 
other signals that have a similar property. 

Almost every conventional algorithm for BSS is built based on 
the assumption that the sources are iid (independent, identically 
distributed) processes or linear ones.  However, such a signal as 
speech has a strong nonlinearity as shown below.  In this paper 
we shall derive a new algorithm, based on the assumption that a 
speech signal should be modeled as an amplitude modulation of 
a stationary process.  In the implementation of the algorithm, the 
second-order statistics are only required.  The basic idea of our 
approach was first given by Kawamoto et al. [7,8], but they only 
dealt with the case of two sources.  The present algorithm is 
applicable for more sources and its stability is proved.  A 
remarkable feature of the algorithm is rapid convergence; the 
separation can be attained within several seconds of speech. 

2. THE MIXING PROCESS AND THE 
DEMIXING PROCESS 

Let us consider a situation where statistically independent 
random signals si(t) (i = 1,…,N) are generated by N sources and 
their mixtures are observed by N sensors.  It is assumed that 
every source signal si(t) is a stationary random process with zero 
mean, and the sensor's outputs xi(t) ( i = 1,…,N ) are given by a 
linear mixing process:  

( ) ( ) ( ) ( )t t z tτ
τ

τ= − =�x A s A s   (1) 

where s(t) � [s1(t),…,sN(t)]T, x(t) � [x1(t),…,xN(t)]T, and            
A(z) �  Aτz−τ.  Here, z represents the time-shift operator              
( z－1s (t) �  s ( t –1 ) ) and is also used as a complex variable.  It 
is known that, in order to realize BSS, at most one source signal 
is allowed to be Gaussian.  For the mixing process we assume 
two conditions: τ

τ
< ∞� A  and non-singularity of A(z) for |z| = 

1.  The first condition states that the mixing process is stable, and 
the second one claims that A(z) is invertible though the inverse 
A−1(z) may not be a causal system.  

To recover the source signals from the sensor signals, we 
consider a demixing process (which will be referred to as the 
separator) of the form  
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( ) ( ) ( ) ( )t t z tτ
τ

τ= − =�y W x W x   (2) 

where y(t) �  [ y1(t),…,yN(t) ]T and W(z) �  Wτ z −τ.  If the 
mixing process A(z) is known beforehand, the source signals can 
be recovered by setting as W(z) = A−1(z), of course.  An essential 
difficulty in BSS is that A(z) or A−1(z) must be estimated from 
the observed data x(t) only.  Besides, the impulse response {Wτ} 
might need to take a noncausal form in general, i.e., Wτ ≠ O         
( τ < 0 ).  This problem is resolved by designing the separator so 
as to recover the source signals with a time lag. 

In BSS the definition of the source signals has indeterminacy.  
Namely, if s1(t),…,sN(t) are source signals, their arbitrarily linear-
filtered signals e1(z)s1(t),… ,eN(z)sN(t) can also be considered 
source signals because they are also mutually independent.  The 
mixing process is then A(z)diag{e1

−1(z),…,eN
−1 (z)}.  There is no 

way to distinguish between {si(t)} and {ei(z)si(t)} because the 
only information we are given a priori is the fact that the sources 
are mutually independent and the mixing process is a linear one. 

A source signal si(t) is called a linear process if it can be 
expressed as si(t) = ci(z)ei(t), where ci(z) is a linear filter and ei(t) 
is an iid signal.  Conventional methods usually assume this 
linearity of the sources, and the separator is designed to provide 
ei(t).  In the context of blind separation of linearly mixed signals, 
there is no substantial difference between ‘iid sources’ and 
‘linear sources’.  As shown in the next section, speech signals, 
which we want to deal with in this paper, are far from linear. 

 

3. A CONVENTIONAL ALGORITHM 

To make clear the peculiarity of our approach, we start with an 
approach proposed by S. Amari et al. [2,3].  Define  

( )( ) ( )( ) ( )
1

log
N

i i
i

I z E q y t h t
=

� �− − � �� �� ��W y� , (3) 

where h[y(t)] is the entropy rate of y(t) and qi(u) is a pdf 
assumed for source signal si(t).  If the source signals are iid and 
qi(u) approximates well the real pdf of si(t), then minimizing 
I(W(z)) provides a desired solution.  The minimization can be 
performed by the following iterative calculation (natural gradient 
learning):  

( )( ) ( ) r
r

t t rτ τα ϕ τ� �∆ = − − +� �
� �

�W W y y W , (4) 

where φ(y(t)) �  [ φ1(y1(t)),…, φN(yN(t)) ]T and φi is defined as 
φi(u) �  −d log qi(u) / du.  α is a small positive constant. 

When deriving the above algorithm it has been assumed that each 
of the source signals is an iid process or more generally a linear 
process.  As shown below, however, speech signals have strong 
nonlinearity.   

4. BSS FOR MIXTURE OF SPEECH 
SIGNALS  

4.1 Nonlinearity of speech signals 

Here we see how far speech signals are from linear processes.  To 
this end, we attempted to decorrelate a speech signal x(t), using a 
decorrelator:  

( ) ( ) ( ) ( )y t w z x t w x tτ
τ

τ= = −� .  (5) 

To determine w(z) or {wτ}, we utilized a single-input, single-
output version of (4): 

( )( ) ( ) r
r

w w y t y t r wτ τα ϕ τ� �∆ = − − +� �
� �

� , (6) 

where ( ) (1 ) (1 )u uu e eϕ − −= − + .  If the speech signal were a 
linear process, then the output y(t) of the decorrelator ought to 
have been iid signal.  Namely, the scatter diagram of y( t ) and   
y( t + τ ) would show a similar shape for every τ, and moreover it 
would be cross-shaped because speech signals can be considered 
super-Gaussian.   

Figure 1 shows the actual distribution of y( t ) and y( t + τ ) for       
τ = 1, 10, 100, 1000 (one step corresponds to 0.1ms).  For small τ 
the scatter diagrams are circular, suggesting that y(t) and y(t + τ) 
are not independent for small τ.  This can be seen more clearly in 
Figure 2, which shows two kinds of forth-order cross cumulants 
between y(t) and y(t + τ) as a function of τ.  For small τ the cross 
cumulants are very large while they are nearly zero for large τ.  

The above result suggests that a speech signal cannot be made iid 
by a linear filter, implying that it is not a linear process.  We may 
well imagine that the pdf of a speech signal (or more accurately, 
the speech signal that is made as iid as possible) takes a form as 
shown in Figure 4.   

If a BSS algorithm based on the linearity of the source signals is 
applied to nonlinear signals, two kinds of issues can arise:  

(i) Instability: as shown by Ohata and Matsuoka [9], such an 
iterative algorithm as described in §3 does not stably give a 
desired separator if the source signals are far from linear.  

(ii) Inefficiency: even if it provides a desired separator, the 
convergence will become very slow.  

4.2 A model for speech signals 

We want to propose the following model for speeches uttered in 
common situations, that is, a speech signal s(t) is modeled as an 
amplitude-modulation of a stationary signal: 

( ) ( ) ( )s t t r tσ= ,   (7) 

where  

(i) r(t) and σ(t) are mutually independent; 

(ii) r(t) is a stationary, white, Gaussian process with zero mean 
and unity variance; 
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(iii) σ(t) is a stationary random process and, moreover, is slowly 
varying with time. 

According this assumption, given σ(t), the conditional pdf of s(t) 
becomes 

( ) ( )( )
( )

( )
( )

2

22

1| exp
22

s t
q s t t

tt
σ

σπσ

� �� �= −� �
� �� �

. (8) 

Note that as for σ(t) its probabilistic property is not given 
specifically.   

Signal s(t) has the following properties:  

(a) It is a super-Gaussian signal except that σ2(t) is constant 
with time.  

(b) It is a white signal in the sense of second-order statistics; 
E[ s(t)s( t  + τ) ] = 0 for τ ≠ 0.  

(c) For large τ, s(t) and s( t + τ ) are mutually independent while 
for small τ, they are not independent.  

Here we show an example.  It can be shown that if σ(t) is a 
stationary Gaussian process with zero mean, then the 
(normalized) kurtosis of σ(t) becomes 9.  The actual kurtosis of 
the speech signal dealt with in 4.1 was 9.82, being very close to 9.  
Moreover, y(t) and y( t + τ )  becomes independent for τ greater 
than several hundreds.  So, we here assume that σ(t) is a 
Gaussian process given by the following AR model:  

( ) ( ) ( )0.997 1 0.0774t t n tσ σ= − + ,  (9) 

where n(t) is a stationary, white, Gaussian process with zero 
mean and unity variance.  Figure 3 shows the scatter diagrams of 
s(t) and s(t + τ).  They remarkably resemble the scatter diagrams 
shown in Figure 1.  Note, however, that below we will not pay 
any attention to the probabilistic characteristics of σ(t) except 
that it is a slowly varying function. 

4.3 A new BSS algorithm 

If we knew the variance σi
2(t) of the i-th source, we could employ 

(8) as a ‘target’ pdf in (3).  Then, we would obtain the following 
algorithm:  

( ) ( )1( ) T
r

r
t t t rτ τα τ−� �∆ = − − +� �

� �
�W W R y y W ,       (10) 

where R(t) = diag{σ1
2(t),···,σN

2(t)}. 

In actual situations, however, σi(t) is unknown, of course.  Here 
we replace diag{σ1

2(t),···,σN
2(t)} in (10) with                             

D(t) �  diag{E[y1
2(t)],···, E[yN

2(t)]}, leading to  

( ) ( ) ( )1 T
r

r
t t t rτ τα τ−� �∆ = − − +� �

� �
�W W D y y W .        (11) 

E[yi
2(t)] needs to be estimated by a time averaging filter for yi

2(t).  
It should be noted that, before source separation is achieved, D(t) 
is not an estimate of R(t).  But once the separation is achieved, 
D(t) becomes R(t) (To be exact, E[yi

2(t)] becomes proportional to 
σi

2(t)).  So, it can be expected the behavior of (11) will be almost 

the same as that of (10) around a desired solution.  A rough 
outline of stability analysis for  (11) is given in Appendix. 

5. EXAMPLES 

Here, we show two examples.  For the actual calculation the 
following algorithm was used:  

( ) ( ) ( )1

0

ˆ
L

T
r

r
t L t L t L rτ τα τ−

=

� �∆ = − − − − − +� �
� �

�W W D y y W    

(12) 

( )21ˆ ( )
2 1

K

i
k K

t y t L k
K =−

= − −
+ �D  (13) 

In the examples below, the parameters of the learning were 
chosen as α = 0.00001, K = 25, and L = 40, and the initial 
condition of the demixing process were set as WL/2 = I, Wτ = O (τ
≠L/2). 

Example 1:  

The sources are three speeches in radio news.  Three convolutive 
mixtures were produced by the following artificial mixing 
process:  

( )
1 2

1 1

2 1

1.0 0.6 0.4
0.6 1.0 0.6
0.4 0.6 1.0

z z
z z z

z z

− −

− −

− −

� �
� �= � �
� �
� �

A .  

Figure 5 and 6 shows the result of W(z) obtained by the present 
algorithm and the total transfer function V(z) = W(z)A(z) from 
the sources to the outputs after around 6 seconds had elapsed.  
On the other hand, when using a conventional algorithm (4) 
instead, several tens times more iterations were required to attain 
a satisfactory separation. 

Example 2:  

In this example two speech data were taken with two 
microphones in a room.  Figure 8 shows the original speeches, 
the observed signals, and the output of the separator.  One can 
see that the waveforms of sources resemble very closely those of 
the outputs.  Also in this case, the separation was attained within 
around several seconds of speech. 

6. CONCLUSION 

We have shown a new algorithm for BSS of mixture of speech 
signals.  It is based on a nonlinear model for sources, which is 
more suitable for BSS of speech signals than conventional iid 
models.  The experiment shows a considerable good performance 
in respect of convergence speed.   

However there are a problem however in the present algorithm.  
Namely, since the equilibrium of the algorithm is semi-stable, 
there is a possibility that a numerical instability can occur.  To 
suppress this tendency it is better to add some constraint such as 
Minimum Distortion Principle proposed by Matsuoka and 
Nakashima. [10] 
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APPENDIX: STABILITY ANALYSIS OF THE 

PROPOSED ALGORITHM 

If the learning coefficient α is very small, the behavior of the 
dynamics (11) can be approximated by the following continuous 
equation: 

( ) ( ) ( )1 T
r

r

d t E t t r
dt

τ
τ τ− � �= − − +� �

� �
�

W
W D y y W .       (A-1) 

Let ( ) ( ) ( )z z z z τ
τ

τ

−= =�V W A V  be the transfer function 

matrix from the sources to the output terminal of the separator, 
then the impulse response Vτ is written as  

k k
k

τ τ −=�V W A .   (A-2) 

Convolving both the sides of (A-1) with {Wτ} from the right, we 
have  

( ) ( ) ( )1 T
r

r

d t E t t r
dt

τ
τ τ− � �= − − +� �

� �
�

V
V D y y V . (A-3) 

It can easily be found that any impulse response of the following 
form is an equilibrium of (A-3): 

0 a nonsingular diaganal matrix
 ( 0)τ τ

=

= ≠

V

V 0
   

In order to investigate local stability of this equilibrium. 
Consider a small perturbation ∆V

－

τ around V
－

τ as  

τ τ τ= + ∆V V V    (A-4) 

Substituting (A-4) for (A-3), we obtain 

( )( ) ( ) ( )( )0 0 0 0
T T Td t t t

dt
τ

τ τ τ−
∆ = − ∆ + ∆V

V R V V R V V R V V .   (A-5) 

Here we have assumed that R(t) alters very slowly with time. 

We can see that (A-5) can be decomposed into a set of two-
dimensional differential equation:  

( )
( )

( )
( )

2

, ,2

2

, ,2

' '1

' '1

j j
ij ij

i i

ii
ji ji

j j

v r t
v v

v r td
dt r tvv v

v r t

τ τ

τ τ− −

� �
∆ ∆� � � �� �
� � � �� �= −� � � �� �
� � � �� �∆ ∆� � � �� �� �

 (A-6) 

where , , , ,' , 'ij i ij ji j jiv v v v v vτ τ τ τ−∆ = ∆ ∆ = ∆ .  It is easy to show that 

the coefficient matrix is negative semi-definite for any t.  If ( )ir t  

and ( )jr t  independently fluctuate sustainedly, then ,'ijv τ∆  and 

,' jiv τ−∆  converge to zero. 
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Figure 1 The scatter diagram of y(t) and y(t + τ), where  y(t) is a 
decorrelated speech signal. 
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Figure 2  The forth-order cross cumulants between  y(t) and       
y(t + τ).   

 

 

 

 

 

 

 

 

 

 
Figure 3  The scatter diagram of s(t) and s(t + τ), where s(t) is an 
amplitude modulation of a stationary, white signal. 

 

 

 
Figure 4  An image of the distribution of speech signals. 
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Figure 5 This figure shows the impulse responses of W(z). 
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Figure 6 This figure shows the impulse response of total V(z). 
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Figure 7   This figure shows to what degree the source signals 
are contained in each output of the separator.  The figure in the i-
th row and the j-th column indicates the j-th source signal 
contained in the i-th output. 
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(a)  The original speeches 
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(b)  The voices sensed by the microphones 
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 (c) The output of the separator.  

Figure 8  The result of Example 2 
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