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ABSTRACT

In this work we propose a kernel-based blind source sep-
aration (BSS) algorithm that can perform nonlinear BSS
for general invertible nonlinearities. For our kTDSEP al-
gorithm we have to go through four steps: (i) adapting to
the intrinsic dimension of the data mapped to feature space
F , (ii) finding an orthonormal basis of this submanifold,
(iii) mapping the data into the subspace of F spanned by
this orthonormal basis, and (iv) applying temporal decorre-
lation BSS (TDSEP) to the mapped data. After demixing
we get a number of irrelevant components and the origi-
nal sources. To find out which ones are the components of
interest, we propose a criterion that allows to identify the
original sources. The excellent performance of kTDSEP is
demonstrated in experiments on nonlinearly mixed speech
data.

1. INTRODUCTION

Linear blind source separation has been successful in var-
ious applications ([12, 5, 4, 7, 1, 2, 19, 10, 25, 9]). Re-
cently a new line of research has emerged that focuses on
nonlinear mixings. It has so far only been applied to indus-
trial pulp data [9], but a large class of applications where
nonlinearities can occur in the mixing process are conceiv-
able, e.g. in the fields of telecommunications, array process-
ing, biomedical data analysis (EEG, MEG, EMG, . . . ) and
acoustic source separation. Various methods have been pro-
posed for solving nonlinear mixings, e.g. self-organizing
maps [17, 13], extensions of GTM [18], neural networks
[23, 14], ensemble learning [21] or correlation maximiza-
tion using ACE [24]. Note, that most methods except [24]
use high computational cost and depending on the algorithm
are prone to run into local minima. The simplest scenario is
the so-called post-nonlinear BSS

x[t] = f(As[t]), (1)
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where x[t] and s[t] are n× 1 column vectors, A is an n×n

matrix and f is a nonlinear function that operates compo-
nentwise [20].

The general nonlinear BSS problem, that we will ad-
dress in this paper, has an even more challenging setup.
Here, the mixing model reads

x[t] = f(s[t]) (2)

and f is an (at least approximately invertible) nonlinear func-
tion from <n to <n. First algorithms for this problem1 that
are based on the idea of kernel based learning (cf. e.g. [22,
6, 16]) were only tried on toy signals [8]. The difference
between our kTDSEP algorithm and [8] lies mainly in the
manner and the superior efficiency in which the kernel fea-
ture space is constructed and used for unmixing (our ap-
proach considers temporal decorrelation). This eventually
allows to demix large, real-world data sets that are nonlin-
early mixed according to Eq. (2).

Let us first introduce the basic ideas of kernel based
methods that are needed for our algorithm. For input vec-
tors x[t] ∈ <n (t = 1 . . . T ) from an input space a kernel
function k : <n × <n → < that fulfills certain conditions
(cf. [16]) induces a mapping Φ : <n → F into some feature
space F such that the dot product for points in the image of
Φ can be simply calculated using the kernel function (often
called the kernel trick),

k(x[i],x[j]) = Φ(x[i]) · Φ(x[j]). (3)

By using linear algorithms in feature space, nonlinear prob-
lems in input space can be solved efficiently and elegantly.
To solve nonlinear BSS problems one could apply along
these lines a linear BSS algorithm to the mapped data in fea-
ture space. This would give us some direction w ∈ F that
corresponds to a nonlinear direction in input space. Such a
direction is parameterized, as usual for kernel methods, by
a T × 1 vector α = (α1, . . . , αT )> ∈ <T such that

w = Φxα =

T
∑

j=1

αjΦ(x[j]) ∈ F ,

1Note, that in fact, it is only possible to extract the sources up to an
arbitrary invertible transformation (cf. [11]).
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where Φx is the matrix with the column vectors Φ(x[1]),
. . . , Φ(x[T ]). Using the kernel trick (Eq. (3)) we can cal-
culate the real valued T × T matrix

Φ>
x

Φx = (k(x[i],x[j]))ij where i, j = 1 . . . T

which we use to compute the signal that corresponds to the
nonlinear direction w

y[t] = w>Φ(x[t]) = α
>Φ>

x
Φ(x[t]) =

d
∑

j=1

αjk(x[j],x[t])

without having actually to specify the mapping Φ. How-
ever, T is the number of samples and since T is for BSS
problems quite large, such a parameterization leads to fea-
sibility and stability problem. In this paper we introduce a
new algorithm that overcomes these problems and that per-
forms nonlinear BSS.

2. A NEW ALGORITHM FOR NONLINEAR BSS

The image of the input space <n under Φ is a manifold that
is contained in a d dimensional subspace of F . The key for
our algorithm is to find an orthonormal basis for this sub-
space that enables us to parameterize the signals in feature
space efficiently with vectors in a d dimensional parameter
space <d (cf. Fig. 1). Based on TDSEP that uses tempo-
ral decorrelation (cf. [25, 3]) we use this orthonormal basis
to construct a new nonlinear BSS algorithm. This new al-
gorithm is denoted as kTDSEP (kernel TDSEP). kTDSEP
requires four steps:

(i) We start with determining d: randomly choose d in-
put vectors v := v1, . . . , vd from x[1], . . . , x[T ] and
check whether the columns of the matrix Φv := (Φ(v1),
. . . ,Φ(vd)) form a maximally independent system in F (i.e.
whether they form a basis for the image of the input space
under Φ). In order to do that we calculate the rank of the
real-valued d × d matrix

Φ>
v

Φv = (k(vi,vj))ij for i, j = 1, . . . , d.

We repeat this random sampling process with varying d un-
til we have found a d such that there are d input vectors v

for which the matrix Φ>
v

Φv has full column rank, i.e. has
rank d, and we can not find d + 1 input vectors v for which
the associated matrix Φ>

v
Φv has full column rank as well2.

(ii) Next we define an orthonormal basis for the sub-
space of F that contains the image of Φ. Either use random
sampling like in (i) or use k-means clustering to obtain d

2Clearly, this is not possible for all kernel functions. However, through-
out this paper we consider only polynomial kernels.

span(Ξ)F

feature space
<n

<d

parameter space

input space

Fig. 1: Input data are mapped to some submanifold of F which is
the span of some d-dimensional orthonormal basis Ξ. Therefore
these mapped points can be parameterized in <

d. The linear di-
rections in parameter space correspond to nonlinear directions in
input space.

input vectors v for which the matrix Φ>
v

Φv has full column
rank. Note, that it is not important that the chosen vectors
v are among the input vectors x[1], . . . , x[T ]. With the im-
ages Φv of these vectors we construct an orthonormal basis,

Ξ := Φv(Φ>
v

Φv)−
1
2 .

This basis enables us to parameterize the subspace that con-
tains the mapped input vectors in feature space with vectors
from a d dimensional parameter space <d as we will see in
the next step.

(iii) After scaling the observed signals x[t] such that
their absolute maximum is smaller than one (later in this
section we will see why this is useful) we employ this basis
to map the input signals x[t] to real-valued d dimensional
signals Ψ(x[t]) in parameter space,

Ψ(x[t]) := Ξ>Φ(x[t]) = (Φ>
v

Φv)−
1
2 Φ>

v
Φ(x[t])

= ((k(vi,vj))ij)
− 1

2 (k(vi,x[t]))i for i, j = 1, . . . , d.

Note that by construction (Φ>
v

Φv)−
1
2 is an invertible real

valued d × d matrix and Φ>
v

Φ(x[t]) is a real valued d × 1
vector. Both are computed using the kernel trick (Eq. (3))
without explicitely specifying the mapping Φ : <n → F .

(iv) Finally, we apply temporal decorrelation (TDSEP,
[25]) to Ψ(x[t]) which gives us d linear directions in param-
eter space that correspond to d nonlinear directions in in-
put space. The solutions are parameterized by a real-valued
d×d matrix α ∈ <d×d. The corresponding demixed signals
are simply the product of α and Ψ(x[t]),

y[t] := αΨ(x[t]) ∈ <d.
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Most of these signals are irrelevant. To pick the signals of
interest we use a heuristic: by ensuring −1 < x[t] < 1 we
influence the variance of the unwanted signals because the
latter contain higher order versions of the source signals as
we will see in the next section. Therefore, after normalizing
all signals (such that they have zero mean and their absolute
maximum is one) the demixed source signals are the ones
with the highest variance.

3. ANALYSIS OF A TOY EXAMPLE

To give some clue how our algorithm works we take a de-
tailed look at a toy example: for

A =

[

−1.2173 −1.1283
−0.0412 −1.3493

]

and b =

[

−0.2611
0.9535

]

let x[t] = A(s1[t], s2[t])
> + bs1[t]s2[t] be a simple non-

linear mixture (taken from [15]). For the kernel function
k(x,y) = (x>y+1)2, a polynomial kernel of degree 2, we
can explicitly write down the mapping Φ from input space
to feature space (cf. [16]),

Φ(x) = (x2
1, x1x2,

√
2x1, x2

2,
√

2x2)
>.

Note, that we omitted the dimension in which Φ(x) is con-
stant. Since the feature space is <5 we do not have to con-
sider an orthonormal basis Ξ. Denote by

q := (s2
1s

2
2, s2

1s2, s2
1, s1s

2
2, s1s2, s1, s2

2, s2)
>

the monomials of the source signals that appear as linear
combinations in the feature space. We call these monomials
quasi sources. A simple calculation gives us a real-valued
5 × 8 matrix C = DC0, where

C>
0 =













b21 b1b2 0 b22 0
2a11b1 a21b1+a11b2 0 2a21b2 0

a2
11 a11a21 0 a2

21 0
2a12b1 a22b1+a12b2 0 2a22b2 0
2a11a12 a22a11+a12a21 b1 2a21a22 b2

0 0 a11 0 a21

a2
12 a12a22 0 a2

22 0
0 0 a12 0 a22













with A = (aij), b = (bi) and D = diag(1,
√

2,
√

2, 1,
√

2)
such that we can expand the mixture in feature space lin-
early in terms of the quasi sources,

Φ(x[t]) = Cq[t]. (4)

At first view, this situation looks like a mixture of an over-
complete basis that might hardly be solved by TDSEP. For-
tunately, most quasi sources are pairwise correlated: for
two independent signals s1 and s2 the correlation between

s 12 ⋅s
22

s 12 s 22 s 12 ⋅s
2

s 2 s 1⋅s
22

s 1 s 1⋅s
2

s
1
2⋅s

2
2

s
1
2

s
2
2

s
1
2⋅s

2

s
2

s
1
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2
2

s
1
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1
⋅s

2
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1  

Fig. 2: Most quasi sources are pairwise correlated; the middle
panel shows the covariance matrix of the quasi sources resulting
from a polynomial kernel of degree 2, the lower left panel for de-
gree 4 and the upper left panel for degree 8. Note, that the quasi
sources can always be collocated into four groups.

arbitrary monomials in s1 and s2 is

corr(sk1

1 sm1

2 , sk2

1 sm2

2 ) =

cov(sk1

1 sm1

2 , sk2

1 sm2

2 )
∏

i=1,2

√

var(ski

1 smi

2 )
=

E{s
k1+k2
1

}E{s
m1+m2
2

}−E{s
k1
1

}E{s
k2
1

}E{s
m1
2

}E{s
m2
2

}
�

i=1,2

�
E{s

2ki
1

}E{s
2mi
2

}−(E{s
ki
1

}E{s
mi
2

})2
.

Since the moments of normally distributed signals s1 and s2

are (with mean zero and variance one)

E{sk
1} =

{

1 · 3 · · · (k − 1) if k is even

0 if k is odd

we get for such signals

corr(sk1

1 sm1

2 , sk2

1 sm2

2 ) = 0 (5)

if k1 + k2 is odd or m1 + m2 is odd. Therefore the quasi
sources can be collocated into four groups with no correla-
tions between the groups; e.g. for a polynomial of degree 2
the four groups are (cf. Fig. 2),

{s2
1s

2
2, s

2
1, s

2
2}, {s2

1s2, s2}, {s1s
2
2, s1}, {s1s2}.

Consequently, the mixture in Eq. (4) is not overcomplete.
Next we describe the signals that our algorithm extracts.

Consider two sinusoidal source signals (s1, s2)
> that are

nonlinearly mixed using the above mixture. For a polyno-
mial kernel function of degree 4,

k(x,y) = (x>y + 1)4,

there are twenty-four quasi sources: all possible products of
s1, s2

1, s3
1, s4

1 and their counterparts in s2. Using Eq. (5)
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Fig. 3: The extracted signals in the left panels (only four shown)
are tried to be matched with single quasi sources in the middle pan-
els and combinations of subgroups of quasi sources (right panels).

these quasi sources can also be arranged into four groups
with no correlations between the groups. Applying kTD-
SEP with that kernel function we computed d = 15 (dimen-
sion of the parameter space) and extracted all fifteen signals.
Now we try to explain those signals using the quasi sources
that belong to the used kernel. Four of the extracted signals
(y7, y4, y1, y9) are shown in the left panels of Fig. 3. The
middle panels show the best matching quasi sources. Note,
that the true sources, s1 and s2, have a very high correlation
to their left neighbors, y7 and y4, respectively. The other
extracted signals, y1 and y9, do not have a very high corre-
lation to any of the quasi source signals: the best fits, s4

1s2

and s4
1s

4
2, are plotted in the two lower middle panels. The

extracted signals can better be explained with linear com-
binations of subsets of mutually correlated quasi sources.
Therefore, we combined all quasi sources that are correlated
with s4

1s
4
2 to reconstruct y9. The result is shown in the lower

right panel which reaches a good fit (corr = 0.960), simi-
larly for y1 and the other not shown extracted signals. Note,
that for y7 and y4 that matched s1 and s2 already reasonably
well more quasi sources do not improve the result notably.

It remains the question why the sought-after source sig-
nals appear so well among the extracted signals without
much interference from their correlated quasi sources. The
answer has two parts: to begin with, s1 and s2 usually have
the largest variance among the other quasi sources of their
respective groups. When this is not the case (e.g. for very
large b1 and b2 in our mixture) our algorithm can fail. Sec-
ondly, we experienced in our experiments problems if x is
not scaled between −1 and 1. We think the reason for this
behavior is that by scaling x between −1 and 1 we assure
that the higher order monomials introduced by most of the
components of Φ have smaller variance than the compo-
nents containing x1 and x2 and hereby also favorably in-
fluencing the ratio between the variances of s1 and s2 and
other quasi sources. Note, that this implies that kTDSEP is

source signals observed signals demixed signals

Fig. 4: The left panel shows a scatterplot of the source signals, the
middle panel a scatterplot of the nonlinearly mixed signals and the
right panel the unmixed extracted components that were chosen by
calculating the variance of the normalized signals.

not scale invariant which is, however, no real problem since
we can always ensure −1 < x < 1.

4. EXPERIMENT WITH SPEECH DATA

Consider two speech signals (with 16,000 samples, sam-
pling rate 8 kHz, each ranging between −1 and +1) that
are nonlinearly mixed by

x1[t] = −(s2[t] + 1) cos(πs1[t])

x2[t] = 1.5 (s2[t] + 1) sin(πs1[t]).

This mixture is highly nonlinear (cf. Fig. 4; it transforms
polar into Cartesian coordinates), but kTDSEP succeeds be-
cause s2 appears linearly in x1 and s1 appears linearly in x2

(to see this expand cosine and sine into their series). Linear
TDSEP fails to extract both signals: the second source (that
appears as the radius in the mixture) can linearly not be re-
constructed. We applied kTDSEP with a polynomial kernel
of degree 5,

k(x,y) = (x>y + 1)5,

calculated d = 21 to be the dimensionality of the param-
eter space and obtained the vectors v1, . . . , v21 ∈ <2

by k-means clustering. These points are marked as + in
the middle panel of Fig. 4. An application of TDSEP to
the twenty-one dimensional parameter space yields nonlin-
ear components whose projections to the input space are
depicted in Fig. 5. Note, that the third and the eighth ex-
tracted signals reach very high correlations with s1 and s2

(corr = 0.963, corr = 0.989). To select these two sig-
nals among the twenty-one extracted components in an un-
supervised manner we use the above mentioned heuristic
approach that calculates the variances of the normalized sig-
nals (mean equal to zero and absolute maximum equal to
one). In Fig. 5 the right column shows a horizontal bar plot
of these variances. The two signals of interest are clearly
highlighted through their large variances.
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Fig. 5: On the left side are the extracted components and the source
signals; the horizontal bars on the right side indicate the variance
of the corresponding signals after normalization (mean is zero and
absolute maximum is one). The third and the eighth signals are
clearly highlighted through their large variances.

5. CONCLUSION

This paper proposes the kTDSEP algorithm for nonlinear
BSS based on support vector kernels. It follows a series
of steps: first we map the data into kernel feature space F
where we try to compute the intrinsic dimension d of the
mapped data. Then we construct an orthonormal basis of
this d dimensional submanifold in F and apply temporal
decorrelation BSS (TDSEP). The rationale behind this is
that the mapping to feature space is constructed such that
the nonlinear separation in input space becomes a (simple)
linear separation in F . Note, that as we are using the kernel
trick (Eq. (3)) we can avoid to work directly in F . After-
wards, TDSEP makes use of the temporal glue in the orig-
inal sources and extracts d signals from which we pick the
components of interest by employing a variance based cri-
terion. A set of experiments on toy and speech signals un-
derline that an elegant algorithm has been found to a chal-
lenging problem.

Applications where nonlinearly mixed signals occur are
perceived e.g. in the fields of telecommunications, array
processing, biomedical data analysis and acoustic source

separation. In fact, our algorithm would allow a software-
based correction of sensors that have nonlinear characteris-
tics, e.g. due to manufacturing errors. Clearly, kTDSEP is
only one BSS algorithm that can perform nonlinear BSS;
kernelizing other ICA/BSS algorithms will be left for future
work.
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