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ABSTRACT

In this paper we consider a problem of blind co-channel signal sep-
aration, the goal of which is to estimate multiple co-channel dig-
itally modulated signals using an antenna array. We consider the
joint maximum likelihood estimation [1] and present a sequential
algorithm, which is referred to as sequential joint maximum likeli-
hood (SJML) algorithm. In addition we also apply the sequential
least squares to ILSP [2] and the resulting algorithm is referred
to as the sequential least squares with projection (SLSP). Useful
behavior of these two algorithms are confirmed by simulations.

1. INTRODUCTION

Mobile communications are growing rapidly in the number of sub-
scribers and in the range of services, but available radio frequency
spectrum is limited. Increasing spectrum efficiency is an impor-
tant challenging problem in signal processing and wireless com-
munications. A promising solution to this lies in exploiting spatial
diversity (via antenna arrays). Array processing techniques allows
multiple co-channel users per cell in order to increase the capacity.

Blind co-channel signal separation aims at estimating multi-
ple co-channel digitally modulated signals, given only observation
vector (measured at an antenna array) which consists of a super-
position of signal waveforms plus additive noise. Several methods
have been developed so far, among which, we pay attention to two
algorithms: (1) Iterative Least Squares with Projection (ILSP) [2];
(2) joint maximum likelihood estimation [1]. It seems that these
two algorithms are more suitable in the task of blind co-channel
signal separation than conventional gradient based ICA algorithms
[3, 4, 5] which did not take the effect of additive noise into ac-
count. We apply the sequential least squares method to these two
algorithms. Then resulting algorithms are referred to as SLSP and
SJML. These algorithms converge to a solution much faster to the
gradient-based ICA algorithms and shows better performance in
the presence of additive white Gaussian noise. Algorithm deriva-
tion and some numerical examples are presented.

2. PROBLEM FORMULATION

Consider
�

narrowband signals entered at an array of � sensors
with arbitrary characteristics. There are multiple reflected and
diffracted paths from the source to the array in a wireless envi-
ronment or channel. So they arrive at array sensors for different
angles, and with different attenuations and time delays. Output of

antenna array becomes
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�� � is the array response vector to a signal from direction� 
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is the amplitude of the ( -th signal,
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 �+* � is the ( -th signal
waveform, ,



is number of subpaths for the ( -th signal. And
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are the attenuation and time delay corresponding to ( -th

subpath, $
�+* � is white complex symmetric Gaussian noise. The
antenna array output modeled as phase-shifts under the narrow-
band assumption. So data model can be written as
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is the total array response vector A
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and ;=< is the carrier frequency. The source signal structure can be
written as ��
 	?>�@ ���BA


 �2CD�FE������!C4GH�'& (4)

where I is the number of symbols in a data batch, J A

 �+* ��K is the

symbol sequence of the ( -th user, G is the symbol period. And E��+* �
is the unit-energy signal waveform of duration G . Assume that the
signals are symbol-synchronous, we perform matched filtering on
(2) over each symbol period G . We obtain the following equivalent
discrete representation of the data

�L�2CD�-	 ��
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In matrix form, �L�2CD�N	PORQS�2CD�#"%$
�2CD�'M (6)

The problem addressed in this paper is the estimation of QS�2CD� ,
given ���2CD� , and a good estimate of O , where source signal isQS�2CD�R	UT � � �2CD�'&V*V*V*#& � � �2CD�FW X , �L�2CD� is the matched filter output
for array output, array response O is a matrix which dimension is�ZY � and $
�2CD� is white Gaussian noise.
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3. SEQUENTIAL LEAST SQUARES WITH PROJECTION

We assume that the noise $-����� is isotropic Gaussian with zero
mean and variance � � . Then the log-likelihood function of matched
filter output is given by� ����� �FO &'QS�	���'&V*V*V*#&'QS� I ���
 � � I � ��� � � � �� � >�@ ��� � ���2CD���%O QS�2CD� � �� & (7)

where
� * � � denotes the Frobenius norm. The maximization of

the log-likelihood function with respect to the unknown O andQS�2CD�'&�C 	
�.&�*V*V*#& I , becomes identical to the minimization of
separable least squares (LS) problem, i.e.,��� ���� ��� > ����� ��� � I �=� O �H� I � � �� & (8)

where
� � I � 	 T ���	���'&VMVMVMV&'�L� I �FW , �H� I � 	 T QS�	���'&�MVMVMV&'QS� I �FW

and ! is a set of finite alphabet (for example, ! 	 J �.&��"�)K for
BPSK). The ILSP algorithm [2] finds a local minimum of the cost
function (8) iteratively with projecting the estimated # � I � onto
its nearest alphabet.

Motivated by the PAST algorithm [6], we consider the expo-
nentially weighted LS cost function$ 	 @� % ��� & @

3 % � ���(' ���%O QS�(' � � � & (9)

where Q �2CD� belongs to a certain alphabet depending on its constel-
lation. The minimization of (9) leads to) QS�2CD�N	 )O+* ���2CD�'& (10),=�2CD�N	 proj � ) QS�2CD���'&)O � @ � 	 )-/.10 �2CD� )- 3 �020 �2CD�'& (11)

where )-/.10 �2CD�N	 @� % ��� & @
3 % �L�(' �	, X �(' �

	 & )-/.10 �2CR�3���#" ���2CD�	, X �2CD�'& (12)

)-/020 �2CD�N	 @� % ��� & @
3 % ,=�(' �	, X �(' �

	 & )-/020 �2CR�3���D"4,=�2CD�	, X �2CD�'& (13)

and the superscript 5 denotes the pseudo-inverse and proj �+* � means
the projection onto its nearest alphabet. The standard sequential
LS (also known as recursive LS) is applied to derive the SLSP that
is summarized in Table 1.

Note that Pajunen and Karhunen [7] proposed a similar LS
algorithm to our SLSP. Their algorithm is a nonlinear version of
PAST, so it is referred to as the nonlinear PAST. The difference
between the SLSP and the nonlinear PAST is that the former ex-
ploits the generative model, whereas the latter does the recognition
model. As will be demonstrated in simulations, the SLSP is better
in the presence of white Gaussian noise. The benefit of learning
the generative model was also emphasized in [8].

) QS�2CD�
	 )O * �2CR�3���+���2CD�,=�2CD�
	 proj � ) Q �2CD���6 �2CD�-	87 �2C �9���	,=�2CD�:
�2CD�
	 6 �2CD�<;6T & "9,�X �2CD� 6 �2CD�FW7 �2CD�
	 �= Tri > 7 �2CR�3�����?:
�2CD� 6 X �2CD�A@1 �2CD�-	 ���2CD��� )O �2C �9���	,=�2CD�)O �2CD�
	 )O �2CR�3���#" 1 �2CD�B:�X �2CD�
Table 1: Algorithm outline for SLSP. The operator Tri J * K indicates
that only the upper (or lower) triangular part of 7 �2CD�L	 - 3 �020 �2CD�
is calculated and its transposed version is copied to the another
lower (or upper) triangular part then 7 �2CD� is symmetric matrix.

4. SEQUENTIAL JOINT MAXIMUM LIKELIHOOD

For the case of noise-free data, the estimate of Q is obtained by
a linear transform,

) Q 	 O * � , given the estimate of O . It was
pointed out in [1] that the reconstruction of original sources re-
quires a nonlinear transform in the presence of noise. See [1] for
more details.

As in [1], we assume that all sources have identical distribu-
tions and the noise is isotropic white Gaussian with zero mean and
variance � � . Then the MAP cost function is given by� ����� �FO &'QS�	���'&V*V*V*#&'QS� I ���
 � >�@ ���

C �D � ORQS�2CD��� �L�2CD� � �E�FHG " �� % ���JI % �
� % �2CD����K &

(14)

where
� 1 � �E�FHG

is defined as

1 XML 3 � 1 and I % �+* �!	 � � ��� � % �+* �
(� % �+* � represent the probability density function of source

� % ). All
sources Q % are constrained to have unit variance. And the indepen-
dent component

� % are here constrained to have unit variance.
The optimal nonlinear function N for reconstructing indepen-

dent components

� % is given by) Q 	 N � )O * �
�'& (15)

where N 3 � �(O��
	 �	� � � � �PO " � � IRQ �(O��'& (16)

where I Q �(O��-	 �TS�� U ���U .
Since we are dealing with digitally modulated communication

signals, it is reasonable to assume that all sources have uniform
distribution with zero mean and unit variance. Then the probability
density function is given by

��V)� � % �-	 �DXW Y/Z O�� � " W Y �D�[O�� � � W Y �A\ & (17)
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)� �2CD�-	 )O * �2C �9���+���2CD�) Q �2CD�-	 sign � )� �2CD��� ��� � ��� )� �2CD��� & W Y �
if n=1, ,=�2CD�-	��Q � @ �� �Q � @ ���
else

)� �2CD�-	 T 	S& ) QS�2CD�FW
,=�2CD�
	
�Q � @ �� � � � @ ���6 �2CD�
	87 �2CR�3���	,=�2CD�:=�2CD�
	 6 �2CD�<;6T & "9,4X �2CD� 6 �2CD�FW7 �2CD�
	 �= Tri > 7 �2CR�3�����?:=�2CD� 6 X-�2CD�A@1 �2CD�
	 �L�2CD��� )O �2CR�3���	,=�2CD�)O �2CD�-	 )O �2C �9���D" 1 �2CD�B:#X-�2CD�

Table 2: Algorithm outline for SJML

where O��+* � denotes the unit step function. From this we have

I Q �
� % �
	 �
� � � " W Y ��� � � � � W Y �O�� � " W Y ���?O�� � � W Y � & (18)

where � �+* � represent the unit delta function.
We substitute (18) into (16) and assumes the noise variance � �

is very small to obtain the truncation operatorN �(O��-	 sign �(O�� ��� � ��� O�� & W Y �'M (19)

The truncation operator in (19) clips the values outside the intervalT � W Y & W Y W , since the uniformly distributed random variable with
unit variance cannot exceed � W Y .

In [1], the alternating variable method was applied to find a
local maximum of (14). Here we apply the sequential LS to derive
our SJML algorithm that is summarized in Table 2. The only dif-
ference between SLSP and SJML lies in the reconstruction of

) Q ,
given

)O . In SLSP, we used a finite alphabet property so that the
projection onto its nearest alphabet followed LS estimation (car-
ried out by pseudo-inversion). In SJML, the optimal nonlinear
reconstruction was calculated under the uniform density model.
With the different choice of the nonlinear reconstruction functionN , the SJML is applicable to the case where sources have super-
Gaussian distribution. For the case of super-Gaussian distribution,
the sparse-code shrinkage operator was shown to be efficient in the
task of denoising [9].

5. SIMULATIONS

We demonstrate the useful behavior of SLSP and SJML that are
summarized in Table 1 and 2. and compare their performance to
the nonlinear PAST [7] and the conventional natural gradient ICA
algorithm [3, 4, 5].

We assume a uniform linear 3-element antenna array with each
element being half wavelength spaced. We consider two digi-
tally modulated QPSK sources with angles of arrival, ����� and

Y ��� .
Randomly-chosen initial value is assigned to O ���B� or � ���B� . The
identity matrix is assigned to 7 ���B� . For SJML, SLSP, and the non-
linear PAST, we used the forgetting factor

& 	��6M ��� and for the
ICA algorithm (with � % � ) � % ��	�� ) � % � � ) � % ), we used the learning rate� 	��6M ��� � . At each SNR, we carried out 5 independent runs and
calculated averaged BER (see Fig. 1). As shown in Fig. 1, our
algorithms, SLSP and SJML outperforms the nonlinear PAST and
the ICA algorithm in the presence of white Gaussian noise.

Besides the BER performance, we also evaluated the perfor-
mance of algorithms in terms of the performance index (PI) that is
defined by

PI 	 �C
�2C �9��� @� % ���
��� @�
 ���

� E % 
 ��! #" 5 � E % 5 � �3��$
" � @�
 ���

� E 
 % ��! #" 5 � E 5 % � �3��$&% & (20)

where E % 5 is the �('�&�' � -element of the global system matrix ( 	)O * O 	 � O . The smaller value of PI, the better performance.
The convergence of all these algorithms are shown in Fig. 2.

Since SLSP, SJML, and the nonlinear PAST employ the sequen-
tial least squares, they converge to a solution much faster than the
gradient based ICA algorithm. In Fig. 2, the SLSP shows the
fastest convergence because it exploits the finite alphabet prop-
erty. However the computational complexity of SLSP for M-QAM
( ) 	+*6&1��,6&-,/. &�M M M ) will be increased compared to the SJML,
because the SLSP needs more search to project the data into its
nearest constellation. The SJML and SLSP are based on learning
generative model, whereas the nonlinear PAST exploits the recog-
nition model. In the presence of noise, the recognition model does
not take the additive noise effect into account. This is one of the
reason why SJML and SLSP outperforms the nonlinear PAST, al-
though they employ the same sequential least squares algorithm.

6. CONCLUSION

In this paper we proposed two sequential algorithms (SLSP, SJML)
for blind co-channel signal separation. The key ingredient in the
derivation of these algorithms was the sequential LS method. The
algorithms are much faster than the gradient based source separa-
tion algorithms and are free of learning rate. The SLSP and SJML
differs only in the part of reconstruction of sources, given the es-
timate of O . The SLSP exploited the finite property, whereas the
SJML employed the optimal nonlinear reconstruction function un-
der the uniform density model. Thus the SJML can be applied to
the case where sources have arbitrary distributions. Simulations
verified the high performance of our algorithms.
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Figure 1: BER performance of SLSP, SJML, the nonlinear PAST and the ICA algorithm for: (a) source 1; (b) source 2.
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Figure 2: The convergence comparison for SLSP, SJML, the non-
linear PAST and the ICA algorithm.
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