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ABSTRACT

This paper reviews several existing contrast functions for
blind source extraction proposed in the areas of Projection
Pursuit and Independent Component Analysis, in order to
extend them to allow the simultaneous blind extraction of
an arbitrary number of sources which is specified by user.
Using these criteria a novel form of Amari’s extraction algo-
rithm has been derived. The necessary and sufficient asymp-
totical stability conditions that we obtain for this algorithm
help us to develop step-sizes that result in a fast conver-
gence. Finally, we exhibit some exemplary simulations that
validate our theoretical results and illustrate the excellent
performance of the presented algorithms.

1. INTRODUCTION

Blind Source Separation (BSS) is the problem of recovering
mutually independent unobserved signals (sources) from
their linear mixture. Although this problem has recently
attracted a lot of interest because of its wide number of ap-
plications in diverse fields, BSS can be very computatio-
nally demanding if the number of source signals is large
(say, of order of 100 or more). In particular, this is the
case in biomedical signal processing applications such as
EEG/MEG data processing where the number of sensors
can be larger than 120 and it is desired to extract only some
‘interesting’ sparse sources. Fortunately, sequential Blind
Source Extraction (BSE) overcomes somewhat this diffi-
culty. The BSE problem considers the case where only a
small subset of sources have to be recovered from a large
number of sensor signals.

The combined use of BSE and deflation to solve the BSS
problem was originally proposed in [1] and further explored
in [2, 3, 4]. Related research has been done in the area
of Exploratory Projection Pursuit, with the aim of obtain-
ing low-dimensional informative views of high-dimensional
data, and several criteria and algorithms for BSE has been
much earlier proposed (see [5] for a good survey of these

techniques).
The main limitation of existing BSE algorithms is that

most of them can only recover the sources sequentially one
by one. The principal reason for this behavior is the neces-
sity to avoiding the possibility of obtaining, at the outputs,
the sources replicated. Only few algorithms have been pro-
posed till now which enable to extract simultaneously an
arbitrary group of ‘interesting’ sources (from 1 till

�����
where

�
is the total number of source signals and

�
is the

number of sources extracted simultaneously, specified by
user) being, up to our knowledge, the only exceptions [6, 7].

In this paper we present a straightforward technique that
allow us to extend some of the classical criteria for blind
source separation and extraction to the case of the simulta-
neous blind source extraction of an arbitrary subgroup of

�
( � ������� ) sources.

The structure of the paper is as follows. Section 2 will
specify the considered signal model and notation. Section 3
motivates the difficulty of blind source extraction and pre-
sents the extension of several existing criteria to allow the si-
multaneous extraction of a subset of the sources. In section
4 we propose a special form of Amari’s algorithm which
uses the Stiefel manifolds to satisfy the discussed constrained
optimization criteria. In section 5, we present practical bounds
for the algorithm step-size derived from the asymptotical
stability analysis. Section 6 presents exemplary simulation
results, and finally, section 7 presents the conclusions.

2. SIGNAL MODEL AND NOTATION

Let us consider the standard linear mixing model of
�

un-
known statistically independent source signals 	�

� �������������
������� that are linearly combined by the memoryless system
described by a mixing matrix � to give the vector of obser-
vations

� 
���	� (1)
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Fig. 1. Considered signal model for simultaneous blind
source extraction.

Without loss of generality we assume that the sources are
zero mean with unit variance random variables and the un-
known mixing matrix � is orthogonal. Note, that the or-
thogonality of the mixing matrix ( ��� ��
 � � ) can be al-
ways enforced by simply performing pre-whitening on the
original observations. For noisy data the robust prewhiten-
ing or orthogonalization can be employed.

In order to extract
�����

sources, the observations will
be further processed by an

��� �
semi-orthogonal separa-

ting matrix � , satisfying ��� � 
 �	� , which yields to the
outputs vector (or estimated sources)
 
�� � 

� 	�� (2)

where � 
�� � will denote the semi-orthogonal
��� �

global transfer matrix from the sources to the outputs. The
semi-orthogonality of the global transfer system will be im-
portant for preserving the spatial decorrelation of the out-
puts vector since ����������� 
 � � ����� � � � ���	����� � � � ��� � � 
��� � 
 �	� .

Along the paper we will follow this notation. Usually
we will work with normalized random variables, i.e., those
with zero mean and unit variance. According to the usual
criteria random variables will be denoted in capital letters,
whereas the samples of these variables will appear in lower-
case letters. We will reserve the symbol � to specify when
a random variable is Gaussian distributed. � �! will denote
the r-th order auto-cumulant of the random variable, i.e.,���! 
��#"%$��'& �)( � . The differential entropy of the ran-
dom variable & will be denoted by* �'&+� 
,� -/. ! ��01�32'�54 . ! ��01�3670 (3)

and the Kullback-Leibler divergence between two densities.%8 ��01� and
.%9 ��01� will be referred by:); � .%8=< < .%9 � 
 ->.%8 ��01�32'�54

.%8 ��01�.%9 ��01� 670 (4)

3. CRITERIA FOR THE SIMULTANEOUS BLIND
SOURCE EXTRACTION

According to the Darmois-Skitovich theorem [8], the most
natural criterium for the BSE of

�
sources is the minimiza-

tion of the mutual information of the outputs [9, 10]

? �'& ���� � � ��@& � � 
A� * �'& ���� � � ��@& � �CB
�D E F
�
* �'& E � (5)

since the independence and the non-Gaussianity of the de-
sired sources are the key assumptions in this problem.

In Blind Source Separation (
� 
 � ) this was the start-

ing approach for several interesting algorithms. The main
difficulty in the application of this criterium consist in the
necessity of the estimation of the joint entropy of the outputs
since this will also involve the estimation of their joint p.d.f.,
a non-trivial task that would require an extensive amount of
data and computational resources. However, under the spa-
tial decorrelation constraint of the outputs, the joint entropy* �'& � �� � � ��@& ��� is kept constant and the criterium turns im-
plementable. What it remains to do is to perform the min-
imization of the sum of the marginal entropies and this has
been done in two different ways since each marginal en-
tropy can be approximated using the truncated Edgeword
[9] or the Gram-Charlier [11] expansions of the marginal
p.d.f.s of the outputs.

Unfortunately, the same trick can not be used for the
blind extraction with

�G� �
. On the contrary to the Blind

Source Separation case, the joint entropy
* �'& ���� � � ��@& � � now

will depend on the subspace spanned by rows of the extract-
ing system � being, therefore, nonconstant. The reason for
this behavior is that the extracting system allows us to ex-
tract different sets of

�
sources which, at the same time,

have different joint entropies.
Once again, in order to overcome this difficulty, we

should avoid the explicit use of joint densities. With this
aim, Huber [5] suggested to find a functional H#� � � that maps
each p.d.f. of a normalized random variable & E to a real
index H#�'& E � that satisfies the following properties:

1. H#� � � is affine invariant.

2. H#� � �JILK and the minimum value of the index ( H#�'& E � 
K ) is obtained when
. !5M 
 .�N , i.e., when the r.v. fol-

lows a Gaussian distribution.

3. H#� � � is convex (strictly convex) with respect to the lin-
ear combinations of the independent sources (of the
independent sources for which H#�PO%Q��#R
�K ), in such a
way that, if & E 

S �Q F �UT

E QVOWQ , then

H)�'& E � � �DQ F �
< T
E Q < X H#�POWQ�� (6)

where T
E Q are the elements of the semi-orthogonal

matrix � and OWQ��ZY 
 ���� � � � � , are independent and
normalized random variables.

These three properties are close to those given by Donoho
[12] and Comon [9] when they defined the idea of contrast
functions. Many functionals that satisfy the previous pro-
perties has been proposed in the literature [5, 13, 4]. Next,
will briefly review and summarize some of these criteria:
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Minimum Entropy: The minimum Entropy criteria first in-
troduced by Wiggins [14, 12] in single channel Blind
Deconvolution and later proposed by Huber [5] in
Projection Pursuit is given by the maximization of

H�� � �'& � � 
 :); � . !�� ��0 �	� < < .�N � ��0 �	� � (7)


 ���� �	� � ��
�� � � * �'& � � (8)

where & � and � � are, respectively, non-Gaussian and
Gaussian normalized random variables. Another form
of this criterium has been proposed by Friedman in
[13]. If we perform a transformation of the random
variable & E to another r.v. with the following bounded
support 
 � 
 ��� �'& �	� � ��� � � ����� � (were

� �'& � � de-
notes the standard Gaussian c.d.f.), then an alternative
form of the Minimum Entropy index is given by

H�� � �'& � � 
 :); � . ��� ��� �	� < < . ��� ��� �	� � (9)

where � � is an uniform random variable defined in
the interval [-1,1].

Maximum Likelihood: Recently, Amari et al. proposed
in [15, 6] another index for BSE closely related with
the Maximum Likelihood approach. Let O � be the
normalized source which, being part of the mixture,
has the smaller differential entropy. Then,

H���� �'& � � 
 ���� �	� � ��
�� � B � � � �	� . � � ��0 � � � (10)

and it is ready seen that H���� �'& � � � H�� � �'& �	� .
Cumulants based index: This index has a long history, dif-

ferent authors has proposed it in many different ways
and forms [14, 9, 1, 4, 2, 16]. One general form of
this index, for normalized r.v., is given by

H�� �"!+�'& �	� 

D
�$# X&%

'� � < � �!�� < (	) (11)

where * � I � ,
< ���!�� < denotes the modulo of the r-

th order auto-cumulant and % '� 
,+
)
� (	) are scaled or

normalized non-negative weighting factors. Note that
the low-order cumulants (for r=1 and r=2) are rather
excluded from the index since these are kept fixed by
the normalization constraint of the random variable.

It is well known that the previous indices measure the de-
gree of non-Gaussianity or the amount of structure that is
present in the outputs and that, from property 3, they have
their maxima at the extraction of one of the independent
sources. Thus, the blind extraction of one of the sources
is obtained solving the following constrained maximization
problem

-/.�01 H#�'& �	� subject to �������'& �5� 

� (12)

whereas, the blind source separation of the whole set of
sources is obtained maximizing

-/.�01
�D E F
�
H#�'& E � subject to ����������� 
 � � (13)

However, one can observe that there is a theoretical gap be-
tween the extraction of one source and the extraction of the
whole set of sources. The next theorem will establish some
links between both approaches.

Theorem 1 Given a functional H#� � � that satisfies satisfies
properties 1-3, if the sources can be ordered by decreasing
value of this functional as

H#�PO � � I� � � 1I H#�PO � �32LH#�PO � 4 �	� I� � � 1ILH#�PO ��� (14)

and if H#�PO � �32 K , then the following objective function

5 ����� 

�D E F
�
H#�'& E � subject to ����������� 
 �	� (15)

will be a contrast function whose global maxima correspond
to the extraction of the first

�
sources of the mixture, i.e., at

this maxima � 

� O � �� � � � O � ��� up to an arbitrary reorder-
ing or permutation between them.

Proof: From property 3 we have that�D E F
�
H��P& E � � �DQ F � H#�POWQ��

�D E F
�

< T
E Q < X (16)


76 (�8:9 �	; �=< � ��> (17)

where < is a diagonal matrix which elements are ? Q Q 
H#�POWQV� for Y 

���� � � � � .
But the decorrelation constraint for the outputs

( ����������� 
 �	�
) is tantamount to the semi-orthogonality

of the global transfer matrix � . From the application of
the Poincaré’s separation theorem of matrix algebra, and ac-
cording to the sources ordering (14), the eigenvalues @�� �@ X �  � � � @ � of �=<+� � satisfy

H#�PO �BA � 4 Q�� � @ Q � H#�POWQV� (18)

Thus, the maximum of (17) subject to the semi-orthogonality
of � is

-/.�0CDCDE
F
FHG trace

; �=?=� � > 

�DQ F � H#�POWQV� (19)

and the bound is attained only for that matrices G of which�
rows consist in orthogonal vectors that span the same

subspace of the eigenvectors associated with the
�

largest
eigenvalues of ? , which enforces that T

E Q 
 KJI1YK2 �
.
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From the strict convexity of H#� � � , a necessary condition for
the equality between (16) and (17) is that T

E Q 
 ;�� � or K >
whenever H#�POWQ��/R
 K . Since, by assumption, H#�PO%Q��/R
KJI1Y � �

, from the semi-orthogonality of � we can see
that the necessary and sufficient condition for the equality
between (16) and (19) is that the matrix � can be reduced
by row permutations to the form � ��� ��� � , i.e., � is the ex-
traction matrix of the first

�
sources. �

4. EXTENDED AMARI’S ALGORITHM

A particularly simple and useful method to maximize the
generic contrast function

5 ����� is to use the natural Rie-
mannian gradient ascent in the Stiefel manifold of semi-
orthogonal matrices, which is given by�� 1 5 
 � 1 5 ��� � � 1 5 � � � (20)

This leads to the algorithm proposed by Amari in [15] for
blind source extraction� 	�
 4 �
� 
 � 	�
 � ��� ��� 	�
 ���� � � � 	�
 ���� � � 	�
 �
� (21)

where
� 	�
 ���� � 
 � � �J� 
 � � � � and �J� 
 � 
 � ������ � � �� � � �� ������ � G ��� .

The exact expressions of �J� 
 � depend on the selected
criteria. When

5 � � � 
 5 � � � � � approximations to these
derivatives can be found in [9] and in [11]. When using the
cumulants based contrast

5 � � � 
 5 � �"! � � � the algorithm
takes the novel form� 	�
 4 �
� 
 � 	�
 � B�� �D

�$# X&% �
�� ��"! � A�� � ���� � � ! � � � A����� �  �� � 	�
 � � (22)

where
 �� is the diagonal matrix with entries

�
 �� � E E 
 sign �P� �� M � � < � �� M < 	 (	) A��
� (23)

and ! � � � A����� � is the
(�#%$

-order cross-cumulant matrix with ele-
ments � ! � � � A����� � �

E Q�

�#"%$���0 E � & � � 0�Q � & � � � ( ����� � .
The advantage of the above approach is that, for algo-

rithm (22), it is possible to guarantee the identifiability of
the source extraction solutions. Nevertheless, there is no
guarantee that we achieve always the global maximum since
the gradient algorithm can be trapped in the local maxima
corresponding to other extracting solutions.

Extensive simulation experiments show that it is usu-
ally sufficient to repeat the extraction procedure 2 or 3 times
with deflation procedure to obtain all desired signals, which
are, in our case, those with the largest index H#�'& E � among
all possible estimated sources. Although these index mea-
sures, in general, the departure from the Gaussianity of the
sources, we still have some control in order to favor extrac-
tion of source signals with specific stochastic properties or-
dering through the proper selection of the involved cumu-
lants orders

(
and the factors % � and * � . For instance, if

the sources of our interest have asymmetric distributions we
can favor their extraction in first place by weighting more
in the index (11) the skewness and other cumulants of odd
order.

5. ASYMPTOTIC CONVERGENCE

Although a gradient algorithm with a proper initialization
and a sufficient small step-size should have no problems to
converge to the maxima of a given contrast, it is important
to establish possibly large step sizes (learning rates) in order
to ensure a high convergence rate and simultaneously gua-
rantee the stability of the algorithm. Some bounds for the
learning rate can be obtained from the asymptotical stability
analysis of the algorithms.

In this section, we will adopt the following notation:
in order to eliminate the permutation ambiguity in the ex-
tracted solution we define a vector of extracted sources 	 � 

� � � ������� � � � ��� which shares the same ordering of the out-
puts, � E 
 � �J� 	 � � � E is a non-linear function that acts com-

ponent-wise on the extracted sources, ' E 
 �)(+* � M*�, M � � E � E.-
is a variable (originally defined by Cardoso and Laheld in
[17]) that will have an important role in the control of the
stability of the algorithm.

The next two theorems presents the obtained stability
results.

Theorem 2 Assuming that the mixing system is orthogonal,
the necessary and sufficient asymptotic stability conditions
of Amari’s algorithm, given by equation (21), to converge
to the extraction solution are

K � � � �' E if
� 

� (24)

K � � � -0/ 102 �' E B3'�Q � �' E�4 if � ������� (25)

K � � � �' E B3'�Q if
� 
 � (26)

for all 5 �ZY < E76F Q�

���� � � � � .

Due to the lack of space we will skip here the proof.
However, it is interesting to observe that since Amari’s al-
gorithm takes the special form of the EASI algorithm (pro-
posed by Cardoso and Laheld in [17]) in the particular case
of blind source separation (

� 
 � ), the final condition for
blind separation (26) is a simple extension of the local sta-
bility condition of the EASI algorithm [17]' E B3'�Q�2 K for all � � 5 � Y ���  (27)

Theorem 3 Assuming that the mixing system is orthogonal,
the necessary and sufficient asymptotic stability conditions
for the extended Amari’s algorithm, of equation (22), to
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converge to the extraction solution, are also given by condi-
tions (24)-(26), having, for this special case,

' E 
���� � E � 
 D�$# X % � �
< � �, M < (	) (28)

Note that, since ��� � E � is non-negative, the stability condi-
tions only depend on the magnitude of the step-size. For
this extended algorithm it is possible to bound the slowest
convergence mode and determine a robust, but also close to
the locally optimal, learning step size which results in a fast
convergence. This is given by

� 	�
 � 

�

� -/.�0
E
����0 E � (29)

The more similar be the ��� � � factors for the sources, the
faster it will be the convergence of algorithm (22) for this
step size.

6. SIMULATIONS

With the purpose of an easy graphical representation of the
results we will consider nine independent source images
that are linearly combined by a random mixing matrix. These
images have different kurtosis given by!�� , 

���  � � �  � � � � � �� � � � �� 	 � � ��� � ��� K  K
� �CK  K � �
As we can observe that two of them are very close to Gaus-
sian noise. After obtaining the observations, shown in figu-
re 2, we perform prewhitening in order to decorrelate them.

We applied a batch version of Amari’s algorithm which
uses the contrast based on fourth order cumulants, i.e., equa-
tion (22) with

( 
�� , * � 
 � and % � 
 � . Then, we run
the extraction algorithm with

� 
 � and with the adaptive
step-size

� 	�
 � 
 �
� -/.�0

E < � �� M < (30)

After 16 iterations the algorithm converged to the first three
extracted sources shown in figure 3-a). Then, if these are
not the sources of interest we can remove the contribution
of these sources from the observation and perform a new ex-
traction. The second extraction was obtained after 19 itera-
tions to the three sources of figure 3-b) and, finally, the third
extraction converged after 22 iterations to the three sources
of figure 3-c). We can observe how, in agreement with the
presented results, the algorithm favors the extraction of the
sources with greater structure in the first attempts whereas
the sources closer to being Gaussian or those with greater
uncertainty are usually relegated to the last extractions.

Fig. 2. Images of the observations before prewhitening.

7. CONCLUSIONS

In this paper we have presented an unified extension of se-
veral existing optimization criteria for blind source sepa-
ration/extraction to the simultaneous blind extraction of an
arbitrary number of sources

� � �
. There are at least

several reasons that justify the usefulness of the proposed
approach including: simultaneous BSE has a lower com-
putational burden than BSS, it is suitable for that applica-
tions where the deflation procedure should be avoided, and
improves the robustness of the extraction in comparison to
the sequential approach were the errors can be accumulated
and propagated, moreover, applying global optimization or
using only several trials we can extract sources with de-
sired stochastic properties (i.e. those with the largest indexH#�'& E � ). An extended form of Amari’s algorithm has been
derived by applying natural gradient in the Stiefel mani-
fold to a cumulants based contrast function. Furthermore,
we have obtained the local stability conditions of this al-
gorithm and established a learning rate that provides fast
convergence. Finally, we have demonstrated by extensive
computer simulations the validity of theoretical results and
good performance of the proposed algorithm.
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