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ABSTRACT

In this paper we consider the problem of source separation for the
case that sources are (second-order) nonstationary, especially their
variances are slowly time varying. The differential correlation is
exploited in order to capture the time-varying statistics of signals.
We show that nonstationary source separation can be achieved by
differential decorrelation. Algebraic methods are presented and
discussed.

1. INTRODUCTION

Source separation is a fundamental problem that is encountered
in many practical applications such as telecommunications, im-
age/speech processing, and biomedical signal analysis where mul-
tiple sensors are involved. In its simplest form, the � -dimensional
observation vector �����
	���
 ��� is assumed to be generated by

�����
	����������
	��������
	 � (1)

where �!��
 � �#"%$ is the unknown mixing matrix, �����
	 is the & -
dimensional source vector (which is also unknown and &(')� ),
and �����
	 is the additive noise vector that is statistically indepen-
dent of �����
	 .

A variety of methods and algorithms for source separation
have been developed for last decade (for example, see [1] and ref-
erences therein). Most of source separation algorithms focused
on stationary signals and exploited the non-Gaussianity [2] or the
temporal structure of source [3]. However, many natural signals
are inherently nonstationary, so the nonstationarity is one impor-
tant property that can be used for the task of source separation.
Earlier work on nonstationary source separation can be found in
[4] and some recent developments are in [5, 6, 7, 8].

In this paper we focus on the problem of nonstationary source
separation In order to capture the time-varying statistics of signals,
we employ the concept of differential learning [9, 10] which will
be described in Sec. 2. In our previous work [7, 11], we devel-
oped algebraic methods for nonstationary source separation which
exploited multiple time-delayed correlation matrices of observa-
tion data evaluated in several different time-windowed data frame.
The simultaneous diagonalization (or generalized eigenvalue prob-
lem) and the joint approximate diagonalization method [12] were
used in the framework of nonstationary source separation. Here
we adopt the differential correlation and generalize our previous

work. We discuss the benefits and drawbacks of methods based on
differential correlation.

Throughout this paper, the following assumptions are made:

(AS1) The mixing matrix � is of full column rank.

(AS2) Sources are spatially uncorrelated but are temporally cor-
related (colored) stochastic signals with zero mean.

(AS3) Sources are second-order nonstationary signals in the sense
that their variances are time varying.

(AS4) Additive noises *,+.-
���
	
/ are stationary stochastic processes.

2. DIFFERENTIAL CORRELATION

Since the statistics of nonstationary signals are time-varying, how
fast or how slow their statistics are changing, might have impor-
tant information. In order to capture the time-varying statistics of
nonstationary signals we exploit the differential statistics which
is defined by the derivative of statistics with respect to time (or
its discrete-time counterpart is defined by the difference between
statistics). Recent work on differential learning for source separa-
tion can be found in [9, 10, 13].

The time-delayed correlation matrix of the observation vector�����
	 is defined by

0�1 ���
23�
45	��(6879�����
2:	;�=<����
2�>?45	A@CB (2)

In practice, the sample correlation matrix D0�1 ���
2E�F45	 is computed
using the samples in the G th time-windowed data frame. Here we
use the notation

0�1 ���
2E�F45	 for both ensemble correlation and sam-
ple correlation. The differential correlation matrix is defined by

H 0�1 ���I�F45	��KJ 0�1 ���I�F45	
J � B (3)

Or its discrete-time counterpart is defined byH 0�1 ���
2E�;�FLM�F45	=� 0�1 ���
23�F45	N> 0�1 ���FLO�
45	 B (4)

Here we adopt the definition in (4).
One can easily see that under the assumptions (AS1)-(AS4),

we have the following decompositionH 0�1 ���
2E�;�FLM�F45	���� H 0�P ���
2E�;�FLM�F45	F�Q<�� H 0�R ���
2E�;�FLM�F45	 � (5)

319



where
H 0�P ���
2E�;�FLM�F45	 and

H 0�R ���
2E�;�FLM�F45	 are the differential corre-
lation matrices of source vector � ���
	 and noise vector �����
	 defined
in the same way as in (4), respectively.

Remarks:
� H 0�P ���
2E�;�FLM�F45	 is a diagonal matrix due to the assumptions

(AS2) and (AS3).
� H 0�R ���
23�;�FLM�
45	 disappears when: (1) the noise is a stationary

stochastic process; (2) the noise is temporally white regard-
less of its spatial dependence. This observation enables us
to find a method for robust estimation of the mixing matrix� .

� When
H 0�R ���
23�F�FLM�F45	 disappears, the mixing matrix � or

its pseudo-inverse (demixing matrix
�

) can be estimated
by diagonalizing a set of matrices, * H 0 1 ���
23�;�FLM�F45	
/ . Alge-
braic methods are discussed in Sections 3 and 4.

3. SYMMETRIC-DEFINITE PENCIL

Let us consider two different differential correlation matricesH 0�� � H 0�1 ��� � �;���:�F45	������ � � <��H 0 � � H 0�1 ���
	:�;�
�.�F45	��������A� <�� (6)

where

� � � H 0�P ��� � �;���:�F45	�� diag *�
 � �ABABABA��
 $ /3���� � H 0�P ���
	:�;�
�.�F45	�� diag *�� � �AB,BABA��� $ /3B (7)

The simultaneous diagonalization of two matrices
H 0��

and
H 0 �

allows us to estimate the mixing matrix � or the demixing ma-

trix
� � ��� � , provided that 7�� - ������ � @ are distinct. Typically

the simultaneous diagonalization consists of steps: (1) whitening
and (2) unitary transform. Alternatively the simultaneous diago-
nalization can be carried out by solving the generalized eigenvalue
problem, H 0 ��� � H 0�� � diag * � � �ABAB,BA� � $ /�B (8)

Then the mixing matrix � corresponds to � � < , provided that7�� -N������ � @ are distinct. Note that (8) is identical to the problem

H 0 � �� H 0 ��� ��� diag * � � �ABAB,BA� � $ /�B (9)

Remarks:
� The method based on the generalized eigenvalue problem

gives an closed-form solution.
� It is expected to the method here is less sensitive to additive

noise, compared to many existing source separation meth-
ods. In the presence of spatially correlated but temporally
white noise, the differential correlation with non-zero time-
lag ( 4���� ) of noise vector becomes zero matrix. This is
also true for regular time-delayed correlation matrix. Some
related work can be found in [7, 11]. If the noise is spatially
and temporally correlated, but is stationary, then the dif-
ferential correlation of noise vector is zero matrix (at least
theoretically).

� A numerical instability might happen because of two rea-
sons: (1)

H 0��
and

H 0 � might not be symmetric; (2)
H 0��

and
H 0 � are not always positive definite even when 4Q�! .

The set of all matrices of the form
H 0 �E> � H 0�� with � ��
 � is said

to be a pencil. Frequently we encounter into the case where
0 � is

symmetric and
H 0��

is symmetric and positive definite. Pencils of
this variety are referred to as symmetric-definite pencils [14].

Theorem 1 (pp. 468 in [14]) If
H 0 � > � H 0�� is symmetric-definite,

then there exists a nonsingular matrix � �#" $ � �ABABABA��$ $ % such that

� < H 0�� � � diag *�
 � �ABABABA��
 $ /�� (10)

� < H 0 ��� � diag *�� � �AB,BABA��� $ /�B (11)

Moreover
H 0 �&$�-N� � - H 0�� $�- for 'N�)(.�,BABABA�F& , and � - ������ � .

For the requirement of symmetry, we replace
H 0��

and
H 0 �

by
H+* �

and
H+* � that are defined by

H+* � � (, 7 H 0�� � H 0 < � @ � (12)H+* � � (, 7 H 0 �=� H 0 < � @ B (13)

In general
H+* �

is not always positive definite, regardless of
the value of 4 . Thus we consider a linear combination

H.- � � /0
- 1 �32 -

H+* 1 ��� � �;��� �F4,-M	 (14)

for 4)5 ,
. The coefficients 2 - are selected in such as way thatH.- �

becomes positive definite. For example, we can use the same
method as employed in the finite-step global convergence (FSGC)
algorithm [15], in order to find * 2 -;/ such that the matrix

H.- �
is

positive definite. Thus, the pencil
H+* � > � H.- � is symmetric-

definite, so the generalized eigenvector matrix � that solvesH+* ��� � H.- � � diag * � � �,BABABA� � $ /�� (15)

can be computed without any numerical instability problem. The
method of choosing a set of coefficients, * 2 -;/ such that the matrixH.- �

is positive definite, is summarized below.

Algorithm Outline: Selection of * 2 -;/
1. Estimate differential correlation matrices and construct an�76���4 matrix

8 �#" H+* 1 ��� � �;���:�F4 � 	39�9�9 H+* 1 ��� � �;���:�F4 / 	 % B (16)

Then compute the singular value decomposition (SVD) of8
, i.e.,

8 ����:<;�<�� (17)

where � � 
 � �#"%� and ; � 
 ��� / "%� / are orthogonal
matrices, and : has nonzero entries at �='F�
' 	 position ( ' �
(.�,BABABA�F& ) and zeros elsewhere. The number of sources, &
can be detected by inspecting the singular values. Define
� P

by

� P �#" $ � 9�9�9
$ $ % � (18)

where $�- is the ' th column vector of the matrix � and & '� .

2. For '��)(.�,BABABA�&4 , compute
> - �)��<P H+* 1 ��� � �;��� �F4,- 	�� P B (19)
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3. Choose any initial ���#" 2 � 9�9�9 2 / % < .

4. Compute

> � /0
- 1 � 2 -

> -;B (20)

5. Compute a Schur decomposition of
>

and check if
>

is
positive definite or not. If

>
is positive definite, the algo-

rithm is terminated. Otherwise, go to Step 6.

6. Choose an eigenvector $ corresponding to the smallest eigen-
value of

>
and update � via replacing � by � � �

where� � � $ < >�� $�9�9�9
$ < > / $�� <� " $ < >�� $ 9�9�9
$ < > / $ %�� B (21)

Go to step 4. This loop is terminated in a finite number of
steps (see [15] for proof).

Note: In the case of � �8& (equal number of sources and sensors),
step 1 and 2 are not necessary. Simply we let

> -N� H+* 1 ��� � �;��� �F4,-M	 .
Remark: The symmetric-definite pencil method described above
in fact exploits both the nonstationarity and temporal structure of
signals. Instead of using a linear combination of

H+* 1 ��� � �;���:�F4,-M	 ,
we can consider a combination of

H+* 1 ���
2E�;�FLM�� 3	 (for GQ�)(.��� �,BABAB
and 	 � , ��
%�,BABAB ) for the case where signals are nonstationary
without temporal correlations.

4. JOINT APPROXIMATE DIAGONALIZATION

Let us consider a unitary mixture, �����
	 described by�N���
	=��
 �����
	��������
	 � (22)

where 
 �?
 � $�"%$ is an orthogonal matrix, i.e., 
�
 < ��� . The
unitary mixture vector �����
	 can be obtained by a whitening trans-
formation � , i.e., �����
	Q��� �����
	 . In order to reduce the effect
of white noise, the robust whitening [16, 11] can be employed. It
follows from the assumptions (AS2) and (AS3) that we haveH 0�� ��� � �;���:�F4,-M	=��
 H 0�P ��� � �;��� �F4,- 	�
�< (23)

for 4,- ��! ( '��)(.�,BABABA��� ).
We apply the joint approximate diagonalization (JAD) to esti-

mate the unitary mixing matrix 
 , as in JADE [17], SOBI [3], and
SEONS [11]. The joint approximate diagonalization method finds
a unitary joint diagonalizer ; of * H 0�� ��� � �;��� �F4,-M	
/ which satisfies

; < H 0�� ��� � �;���:�F4,-M	�; �!� -;� (24)

where *�� - / is a set of diagonal matrices. The unitary mixing ma-
trix 
 ��; � < .

Algorithm Outline: Differential Decorrelation via JAD

1. Apply the robust orthogonalization [16, 11] to obtain the
vector �����
	 .

2. Divide the data *������
	
/ into two non-overlapping blocks and
calculate

H 0�� ��� � �;��� �F4��.	 for � �)(.�,BABABA��� .

3. Find a unitary joint diagonalizer ; of * H 0�� ��� � �;���:�F4��:	
/
which satisfies

;�< H 0�� ��� � �;��� �F4��.	�; �!���3� (25)

where *����3/ is a set of diagonal matrices.

4 The unitary mixing matrix is given by 
 ��; � < .

Remark: Instead of exploiting a set of matrices,
H 0�� ��� � �;���:�F4��:	

for � �)(.�ABAB,BA��� , we can also employ a set of matrices
H 0�� ���
23�;�FLM�F4��.	 .

In other words, the data is divided into a bunch of small frames to
calculate the differential correlations. At each data frame, we cal-
culate several different time-delayed differential correlation matri-
ces or single differential correlation matrix to find

H 0�� ���
2E�;�FLM�F4��:	 .
5. SIMULATIONS

In this simulation, we used 3 digitized voice signals and 2 music
signals, all of which were sampled at 8 kHz. The mixture vec-
tor �����
	 was generated by the mixing matrix � � 
 ���," � , all the
elements of which were drawn from standardized Gaussian distri-
bution (i.e., zero mean and unit variance). The length of whole
data is 10000.

We evaluated the performance of our method (that is JAD-
based differential decorrelation), JADE [17], and SOBI [3]. Note
that all these three methods employ the same joint approximate
diagonalization, although different statistics are exploited. In our
proposed method, first the observation vector �����
	 was transformed
to �����
	 by a linear transformation � that is computed by the robust
orthogonalization. The robust orthogonalization exploits a linear
combination of multiple time-delayed correlation matrices of the
observation vector [16, 11, 18]. Once the vector �N���
	 is computed,
then we divide the whitened vector into two non-overlapping frames
and compute

H 0�� ��� � �;���:�F4��:	 for � � (.�,BABABA� ,  . Then a unitary
joint diagonalizer is computed.

In order to measure the performance of algorithms, we use the
performance index (PI) defined by

PI � (&=� & > ( 	 $0
- 1 �

!�" $0
2 1 �$# % - 2 #&('�) � # % - � # > (+*

�
" $0
2 1 � # % 2 - #&('�) � # % � - # > ( *�, � (26)

where % - � is the �='F�-�E	 -element of the global system matrix . �� � and &('�) � % - � represents the maximum value among the el-
ements in the ' th row vector of . , &('�) � % � - does the maximum
value among the elements in the ' th column vector of . . When the
perfect separation is achieved, the performance index is zero. In
practice, the value of performance index around (� � 	 gives quite
a good performance.

The result is shown in Fig. 1. In the range of low SNR, our
method outperforms JADE and SOBI. In fact, this high gain results
from exploiting the time-delayed differential correlation matrices
with the robust orthogonalization. The method based on the gen-
eralized eigen-decomposition also works fine, but its performance
is not comparable to the method based on the JAD.

6. DISCUSSION

In this paper, we introduced the differential decorrelation and showed
how it could be used for the task of nonstationary source separa-
tion. This is our first step to investigate the differential correlation
for nonstationary source separation.

We can also develop adaptive algorithms for differential decor-
relation. For example, we can employ the iterative least squares
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Figure 1: Performance comparison for the proposed method,
JADE, and SOBI.

algorithm in [18] and replace the regular correlation by differen-
tial correlation. Many other efficient implementation will be also
possible.

In simulations we only considered the case where additive
noise is spatially correlated but temporally white. However, our
method is potentially applicable to the case of any stationary noise.
However, in practice, it is difficult to expect the differential cor-
relation becomes zero when the sample correlation is used. The
performance will depend on the number of data points that is are
used to compute the sample correlation. Theoretical performance
analysis will be our future work.
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