
SPEECH ENHANCEMENT FROM INTERFERING SOUNDS USING CASA TECHNIQUES
AND BLIND SOURCE SEPARATION

Tomasz Rutkowski, Andrzej Cichocki

Lab. for Advanced Brain Signal Processing
Brain Science Institute RIKEN
Wako-shi - Saitama - JAPAN

email:{tomek, cia}@bsp.brain.riken.go.jp
http://www.bsp.brain.riken.go.jp/

Allan Kardec Barros

Depto. de Engenharia Eletrica
Universidade Federal do Maranhao

Sao Luis - MA - BRAZIL
email: allan@biomedica.org

ABSTRACT

In this paper we propose novel biologically plausible model
for segregation of one dominant speaker from the other con-
current speakers and environmental noise in realcocktail-
party scenario. The developed method integrates two pow-
erful techniques: computational scene analysis (CASA) and
blind source separation (BSS) technique with bandpass pre-
processing. Since each of these techniques applied alone
has same limitations and drawbacks, we combine both meth-
ods in order to obtain improved performance. The com-
puters simulations results show good performance for real
room recordings, especially for the case where mixing con-
volutive (reverberant) system cannot be inverted by any of
these method itself.

1. INTRODUCTION

A fundamental problem in auditory and speech processing
is the separation of speech produced by desired speaker from
the concurrent speakers and acoustic environmental noise.
This problem has been a focus of study using two approaches.
The first approach is based on computational auditory scene
analysis (CASA) techniques. This techniques are based on
modelling auditory function of the human hearing. Recently
also the problem of speech segregation has also been inves-
tigated with some limitations from the perspective of blind
source separation by performing blind multichannel decon-
volution in time or frequency domain [1, 2, 3, 4, 5]. Both of
the above approaches have limitations and mostly problem
of separation of speaker from reverberant mixture of many
concurrent speakers, so called realcocktail party problem
is still not solved. We introduce new model that incorpo-
rate the two above powerful techniques to solve the prob-
lem more efficiently be separating signals (correlograms) in
time-frequency domain rather in time or frequency domain.
Our simulations results show very good results for real room
recordings, where mixing convolutive system cannot be in-

verted using only single of incorporated methods. In many
listening situations, the acoustic waveform reaching our ears
is composed of sounds energy mixture from multiple sources.
The fundamental task of auditory perception is to resolve
such acoustic mixtures, in order to understand each or mostly
one main sound source. Bregman [6] describes this problem
of auditory function as an auditory scene analysis (ASA).
From his studies, ASA is regarded as a two-stage process.
The first stage, known as segregation, decomposes the acous-
tic mixture reaching the ears into a collection of sensory el-
ements. In the second stage, known as grouping or stream-
ing, elements that seems to be produced by the same source
are combined together into streams, that later can be inter-
preted in higher level of auditory system processing units in
the brain. Many studies shown [7, 8, 9] that ASA like pre-
processing can improve speech separation results and also
it is very helpful for proper segregation of audio features.
Most of these studies have been motivated by the need for
a front-end processor for robust automatic speech recogni-
tion in noisy environments. In our previous work [7, 8], we
tried to separate signals by applying bank of bandpass fil-
ters with center frequencies around fundamental frequency
F0 and its harmonics of desired speaker, but problem be-
comes very difficult to attack, when speakers in mixtures
have voices with very closeF0. Currently, computational
ASA remains an unsolved problem for real-time engineer-
ing applications such as automatic speech recognition. The
current state of the art in computational ASA stands in sharp
contrast to the fact that humans and higher animals can per-
ceptually segregate sound sources with apparent ease. It
seems likely, therefore, that computational systems which
are more closely modeled on the neurobiological mecha-
nisms of hearing may offer performance advantages over
current approaches. The model of our new approach to
solvecocktail party problemis presented on Fig.1. We com-
bined our previous model [7, 8] with CASA acoustic wave-
form preprocessing with its implementation indtroduced by
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Fig. 1. The conceptual model for speech segregation and enhancement . The blind signal extraction (BSE) is performed
for correlograms in time-frequency domain rather in the time domain.

Slaney [10, 11]. The waveforms recorded using two micro-
phones imitating human ears are split into subbands, which
model cochlea style of acoustic stimuli accusation and the
cochleagrams are created. In the next step depicted on Fig.
1 the correlograms are created from cochleagrams, to en-
hance periodical components of the speech. The outputs
of correlograms are than processed using BSS units for ev-
ery subband separately, so the separation units combine the
function of separation and extraction (BSE). The only one
output from every BSE unit is than reconstructed in the last
part of our model, that performs auditory model inversion.

2. AUDITORY MODEL

The auditory system of humans consists of various parts
that interact converting the sound pressure waves entering
the outer ear into neural stimulus. Understanding how these
parts act has been the goal of many researches during the
last years thus today it is possible to describe how signals
are elaborated by the auditory system, but it is also possible
to analyze signals using mathematical models that repro-
duce the auditory features. In this way we have the possibil-
ity to understand which kind of representations our higher
levels in the brain use to isolate signals from noise, or to
separate signals which have different pitches. If we want to
reproduce the same operations, we have to be able to work
on representations similar to those used by our brain. Be-
side that, we have also to be able to translate these repre-
sentations in sound waves so that they can be objectively
evaluated. As regards the auditory model, we have used
Lyons passive cochlear model and its implementation pre-
sented by Slaney [10, 11, 12]. The model inversion was
deigned with some slight modifications following the other
work of Slaney et al. [13].

2.1. Cochleagram

The Lyons auditory model puts particular attention on the
behavior of the cochlea, which build the most important part
of the human ear, and which is located in the inner ear. The
way, cochlea preprocess auditory stimuli can be modelled as
as a non-linear filter bank with overlapping subbands. In ar-
tificial implementations the behavior of cochlea can be sim-
ulated by a cascade filter bank. The bigger the number of
these filters the more accurate is the model can be achieved
but also the overall processing complicity increases. For our
experiments we have considered a cascade of 66 filters for
sampling rate of the signal 8kHz. For this purpose we em-
ploy cascade of”gammatone”filters which have following
impulse response:

gi(t) = tn−1 exp(−2πbit) cos(2πfit + φi) (1)

(1 ≤ i ≤ N).

whereN is the number of filter channels,n is the filter or-
der andfi is the center frequency,φi is the phase andbi

determines the rate of decay of impulse response. It was
shown in many physiological studies of auditory nerve tun-
ing curves that auditory filters are distributed in frequency
according to their bandwidths, which increase quasilogo-
graphically with increasing center frequency. According to
Glasberg and Moore [14] the filters are set to have equiva-
lent rectangular bandwidth (ERB), a physiological measure-
ment of critical bandwidth in human subjects

ERB(f) = 24.7(4.37f/1000 + 1). (2)

More precisely the decay rate for every subband can be de-
fined [14]

bi = 1.019ERB(fi). (3)

The exemplary frequency response for cascade filter bank
is presented on Fig.2. To model the directional behavior of
the inner ear cells (according to physiological results, that
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Fig. 2. The frequency characteristics of band pass filters
consisting 66 subbands emulating cochlea like signal acqui-
sition.

is how the hair cells in inner react for stimuli) the half wave
rectifier (HWR) with soft saturation12 (1+tanh(x+a)) was
implemented [11]. The HWR drop the negative value of the
waveform, cutting the energy of the signal by two. The next
and important final step of cochlear preprocessing model
consists of automatic gain control sections (AGC), that ap-
proximately represent the neural firing rates produced by
the solicitation of various parts of cochlea caused by sound
pressure waves entering the cochlea. The cochleagram is
than a two dimensional map of subband processed signal in
time with additional HWR and AGC postprocessing. The
resolution of the cochleagram depends of the number of
choosen subbands. In our case the filter bank divide the
signal into 66 subbans, so we represent the signals in form
of cochlear maps with dimensions66×signal length. The
exemplary cochleagram of short sentence is presented on
Fig.3.

2.2. Correlogram

The correlogram is a short time autocorrelation made on all
the outputs of the cochleagram subbbans. From the auto-
correlation of a signal it is possible to extract the spectral
power of the same signal, in fact the Fourier transform of
its autocorrelation is equal to the square of its Fourier trans-
form magnitude, that is: where is the autocorrelation of x(t).
In the same way the magnitude or the STFT can be calcu-
lated from its STA. Therefore, by simple operations, we can
obtain the magnitude of the short time Fourier transforms of
all the output sequences of the cochleagram. The windowed
autocorrelogram can be written

Rcc(τ, t) =

T∫

0

qt(s)qt(s + τ)ds = F−1‖F (q)‖2 (4)

whereqt(s) = c(t− s)win(s)
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Fig. 3. The cochleagrams for two channels of”cocktail
party problem”recordings. On the left side, there are two
mixed waves from speech signals plotted in time domain
and on the right side the cochleagrams for 66 channel audi-
tory filter banks (the frequency bins numbering is descend-
ing for higher frequencies).

whereF andF−1indicate the forward and inverse Fourier
Transform and win(t) stands for smoothing filter window
with assumption win(t) = 0 for t < 0 and t > T . The
equation 4 can be rewritten:

Rcc(τ, t) =

T∫

0

c(t−s)win(s)c(t−s−τ)win(s+τ)ds. (5)

Finally it is also known, that correlogram is a function of po-
sition or frequency for every basilar membrane of the inner
ear. So the most general form of the correlogram is written
now using notation from the Fig.1:

xi,j(τ, t) =

T∫

0

ci,j(t− s)ci,j(t− s− τ)win(s)ds. (6)

Finally autocorrelation is normalized to eliminate any in-
dication of the relative power in different frequency chan-
nels. Since the autocorrelation doubles the dynamic range
required to represent varying signal levels, Slanley and Lyon
[11] suggested the normalization by the square root of power,
so that the zero lag is equal to one:

x̂i,j(τ, t) =
xi,j(τ, t)

xi,j(0, t)1/2
. (7)

The above autocorrelation produces non-negative output si-
nce the input is also non-negative after section of HWR rep-
resenting hair cell activity. The correlogram is than again a
two dimensional map constructed by computing described
above autocorrelation with fixed delay for every row of co-
chleagram. The autocorrelation is computed based also on
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sliding window of cochleagram with overlapping to cor-
rectly represent nonstationary behavior of speech signal. The
correlogram described above represents function of time,
frequency, and autocorrelation lag. The example of obtain-
ing the correlograms from two channels recording is pre-
sented on Fig. 4. After computing correlograms of the sig-
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Fig. 4. The correlograms for two channels obtained from
limited time cochleagrams presented on Fig. 3. Horizontal
axis represents autocorrelation lag.

nal in limited time windows we obtain three dimensional
representation of every channel (frequency bins× autocor-
relation lag× time). The dimension of the above represen-
tation is like

66× window length× signal duration

window length
. (8)

3. BLIND SOURCE SEPARATION

In order to separate the desired speaker speech representa-
tion in correlogram channels, we can use many algorithms
from the BSS/ICA family [15, 16, 17, 1, 18, 19, 20, 21, 22,
2]. In our model we use modified blind source extraction
(BSE) algorithm presented in [7]. Due to limit of space we
present here only final algorithm without the theoretical jus-
tification. A single processing unit located in every correl-
ogram channel (practically subband) process the number of
input signalsxi,j , (j = 1, . . . , m, i = 1, . . . , 66), wherem
is equal to the number of microphones andi stands for sub-
bands bins. The internal outputs after separation in every
BSEi unit (see Fig. 1)

yi (k) = wT
i xi (k) =

m∑

j=1

wijxij (k) , (9)

εi (k) = yi (k)−
L∑

p=1

bipyi (k − p)

= wT
i xi (k)− ỹi, (10)

wherewi = [wi1, . . . , wim]T andỹi(k) =
∑L

p=1 bipyi(k−
p) is the output of correlogram channel with center fre-
quency and bandwidth suitably chosen according to Lyon’s
cochlea model. The coefficientsbip are fixed during simu-
lations and it can be shown that the weights of a signle BSE
processing unit can be updated iteratively as follows

wi = R̂−1
xixi

R̂xỹi , wi∗ = wi/‖wi‖ (11)

where

R̂xixi =
1
N

M∑

k=1

xi(k)xT
i (k), (12)

R̂xiyi =
1
N

M∑

k=1

xi(k)ỹi(k).

4. SIGNAL RECONSTRUCTION FROM
INDEPENDENT COMPONENTS

The correlogram components after separation usually are
divided into ones showing more periodical structure, which
gives information about fundamental frequency F0 and its
harmonics. These components are taken for reconstruction
while components carrying noise signals without any peri-
odical structure are rejected. The decision is made by an-
alyzing regularity of peaks distribution in correlograms for
every channel. The correlogram components carrying peri-
odical information with peaks suggesting also fundamental
frequencyF0 and its harmonics obtained in previous stage
of processing are taken into reconstruction. The parts of
correlogram carry useful for speech signals component with
enhanced target speaker information. The signal reconstruc-
tion procedure refers to problem of auditory model inver-
sion. The reconstruction stage is divided into two substages:
correlogram inversion and auditory filter bank inversion.

4.1. Correlogram inversion

The process of correlogram inversion can be simplified by
noting that each autocorrelation (every correlogram row) is
related to a power spectrum by applying Fourier transform,
so the process is similar to conversion back spectrograms
into time domain signals. The techniques for conversion
spectrograms without phase information are known and al-
ready successfully implemented [13]. The main problem
rely on the fact that we have to reconstruct signals from the
magnitude of their short time Fourier transform (STFT). It
means that we have no information about their phases. To
achieve this operation Slaney et al. [13] suggest to use the
iterative algorithm of Griffin and Lim [23]. This algorithm,
at each iteration, reconstructs the phase of the signal in or-
der to decrease the square error between the STFT magni-
tude of the reconstructed signal and the STFT magnitude
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a priori known. At each iteration the new signal is calcu-
lated using a procedure similar to the overlap-add method
and the sequences to overlap and add are obtained with the
inverse Fourier Transform of the STFT composed by the
known magnitude, and by the phase of the STFT of the re-
construction of the previous iteration.

4.2. Cochleagram inversion

The cochleagram inversion procedure is done by reverting
the steps done for constructing it. First the AGC is divided
out. The procedure is relatively simple as the samples of the
signal have to be divided for a value that is computable from
the output of the previous samples. Next the procedure of
HWR have to be inverted. It means the negative values of
the signal are reconstructed based on the convex projection
method [13]. It this case two projections are done, one is
in time domain by assigning to the signal its positive part
and second on in frequency domain by filtering the signal
with bandpass filter. We use same bandpass filters like in
cochleagrams creating process. The above projections are
done iteratively for every channel. Finally, the cochlear fil-
ters are inverted by running the filters backward, and than
correcting the resulting spectral shape. Last stage performs
summation of all channel outputs into single waveform.

original correlogram,channel #1

fr
eq

ue
nc

y 
bi

ns

50 100 150 200 250

20

40

60

original correlogram,channel #2

fr
eq

ue
nc

y 
bi

ns

50 100 150 200 250

20

40

60

reconstructed correlogram after separation

fr
eq

ue
nc

y 
bi

ns

50 100 150 200 250

20

40

60

Fig. 5. The comparison of two original correlograms and
the reconstructed one after BSE units of our model for the
same time slot.

5. EXPERIMENTS WITH SPEECH SIGNALS
RECORDED IN REAL ENVIRONMENT

The real room recordings were carried in the empty exper-
imental room, without carpet and any sound absorbing el-
ements, with many reverberations (easy to notice even dur-
ing usual conversation). We used two cardioid condenser
boundary microphonesaudio-technica PRO44, that can re-
cord sounds from half-cardioid space. Such configuration

let as record sounds from many directions similarly as hu-
man being can sense using ears. Boundary microphones
make the task more difficult, because they record more re-
verberated signals from surrounding than directional ones.
The microphones were amplified by high class line ampli-
fier and professional 20-bit multitrack digital recording sys-
tem in PC class computer. The system allows us to record
up to 8 channels simultaneously with 20-bit resolution and
sampling frequency 44.1kHz. The following recordings were
done using natural voices and sounds generated from speak-
ers: (i) mixed man and woman voices talking different sen-
tences in English in presence of heavy rain noise; (ii) 3 man
voices talking simultaneously different sentences in English;
(iii) mixed recordings of man and woman voices talking
different frazes in English; (iv) mixed human and natural
sound (rain, water fall) sounds or music. We conducted all
experiments with target speaker positioned closer to micro-
phones than other acoustic sources. Exemplary computer
simulations of enhancement of one speaker voice in pres-
ence of heavy rain noise, that almost completely covers the
conversation as shown in Fig. 6. For each experiment we
have obtained essential enhancement of target speaker. Due
to limit of space more details will be given during work-
shop’s presentation. For all performed experiments consid-
erable speech enhancement has been achieved. More de-
tailed audio experiment will be presented at conference.

channel #1, conversation during the rain

enhanced speaker #1

channel #2, conversation during the rain

Fig. 6. The result with enhancement of one speaker speech
from conversation recorded during heavy rain using two mi-
crophones.

6. CONCLUSIONS AND DISCUSSION

In this paper we use the well known concepts of cochlea-
grams (output of cochlear model) and correlograms (output
of timing model) to represent sounds in two dimensional
form (images). ICA/BSS is performed for such images (cor-

732



relograms) rather than for time domain standard signals fre-
quency domain spectrograms. Such approach will allow us
to build better sound understanding and separating systems.
Besides of the critical bandpass filtering our model includes
other auditory effects like HWR, AGC. The filter bank used
here is a simulation of and real analog cochlea. There is
neurophysiological evidence that sounds are represented in
the auditory pathway of brain as two or three dimensional
maps thus our model is biologically plausible. We have
described CASA based system for extraction and enhance-
ment of speech signal corrupted by other speakers and en-
vironmental acoustic interferences. Thus our current model
is closer to human like processing of sounds. We strongly
believe that future research concerning human auditory like
preprocessing units will allow us to understand better our
auditory system and we will be able to create more accurate
synthetic systems. There are still open problems, concern-
ing the choice of the most suitable separation techniques
and procedure for masking/decision which allows us rigor-
ously choose optimal components for reconstruction.
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