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ABSTRACT

We introduce a novel approach to the blind signal sep-
aration (BSS) problem that is capable of jointly estimating
the probability density function (pdf) of the source signals
and the unmixing matrix. We demonstrate that, using a
kernel density estimation based Projection Pursuit (PP) al-
gorithm, it is possible to extract, from instantaneous mix-
tures, independent sources that are arbitrarily distributed.
The proposed algorithm is non-parametric, and unlike con-
ventional Independent Component Analysis (ICA) frame-
works, it requires neither the definition of a contrast func-
tion, nor the minimization of the high-order cross-cumu-
lants of the reconstructed signals. We derive a new method
for solving the resulting constrained optimization problem
that is capable of accurately and efficiently estimating the
unmixing matrix, and which does not require the selection
of any tuning parameters. Our simulations demonstrate that
the proposed method can accurately separate sources with
arbitrary marginal pdfs with significant performance gain
when compared to existing ICA algorithms. In particular,
we are successful in separating mixtures of skewed, almost
zero-kurtotic signals, which other ICA algorithms fail to
separate.

1. INTRODUCTION

Regardless of the nature of the unmixing matrix estima-
tion technique (maximum likelihood, stochastic gradient, or
batch mode optimization), the problem of choosing a suit-
able model for the pdf of the sources to be reconstructed is
pivotal in most BSS methods. Whether the objective func-
tion for these algorithms is derived from the InfoMax prin-
ciple [1] or from the Redundancy Reduction principle [2], a
method to estimate the differential entropy of the projected
data has to be devised. Several non-linear contrast func-
tions have been proposed, each capable of modeling a spe-
cific class of source signals (see [3] for a survey of such
functions). Moreover, a technique that adapts the sign of

the contrast function according to the estimated fourth-order
moments of the sources has been proposed [4].

As an alternative, BSS frameworks that are uniquely
based on the simultaneous diagonalization of the higher-
order cumulant tensors of the projected data have been de-
veloped [5]. These methods are not restricted by a specific
choice for the parametrization of the pdf of the source sig-
nals. Potential limitations affecting algorithms based on this
approach include their sensitivity to outliers and their re-
liance primarily on fourth-order cumulants, to perform the
separation.

Recently, new methods that employ more flexible adap-
tive models for the pdf of the source signals have been pro-
posed [6, 7]. Although these frameworks are less stiff in
defining a contrast function, they are still not capable of uni-
versally modeling arbitrarily distributed sources.

In this paper we show that using a Projection Pursuit [8]
framework based on the order-1 entropy index and a robust
kernel density estimation technique, it is possible to derive
a novel blind source separation algorithm, which is capa-
ble of reliably and accurately separating sources with arbi-
trary marginal distributions. The resulting algorithm is non-
parametric, data-driven, and does not require the definition
of a contrast function.

Projection Pursuit (PP) is a statistical exploratory tech-
nique, whose goal is the identification of ‘interesting’ low-
dimensional linear projections of high-dimensional data,
based on certain (usually non-linear) index functional [9,
10]. Although certain connections have been recognized
[11] between the Projection Pursuit algorithms based on an
index that measures deviation from gaussianity (“negentro-
py index”) and the problem of blind signal separation, these
results have been exploited mainly to justify common choi-
ces for the contrast function used in several ICA algorithms
[12]. No true PP based blind signal separation algorithm
has been proposed and successfully implemented.

In Section 2 we establish a PP framework for blind sig-
nal separation. The idea that is pivotal to the proposed
method is described in detail in Section 3. Section 4 pre-
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sents the results of our simulations. Final remarks and con-
clusions are given in Section 5.

2. PROJECTION PURSUIT AND BLIND SIGNAL
SEPARATION

We make the conventional assumption that N independent
sources s = �������������	�
����
 , are instantaneously mixed by a
full rank mixing matrix A, giving ������� . The recovery
of these sources is attempted by linear projection through
an unmixing matrix � , in such a way that the random vari-
ables ������� , in the case of perfect separation, represent
a scaled and permuted version of the original sources. As-
suming that M samples of � are available as a matrix � ,
it is convenient to sphere and center the data by principal
component analysis. If the recovery of the original sources
is attempted using the sphered data matrix, and if the sig-
nals are truly uncorrelated, then it can be shown that the
unmixing matrix must be orthogonal (a simple proof of this
result is given in [13]). Throughout this paper we will make
the assumption that the data is sphered, and that the prob-
lem is reduced to the estimation of an orthogonal matrix � ,
although this is not strictly required in our algorithm.

A method to seek a single one-dimensional projection
of N-dimensional data was developed by Jones in [8]. A
Projection Pursuit algorithm based on the order-1 entropy
index of interestingness, identifies such a projection solving
the following problem:

����� ! "$#&%(' � ����� )�* #&%(',+ -/. * #&%('10/%
(1)

s.t. 2 2 342 25��6/�
The constraint 2 2 342 27�86 restricts the search space to linear
projections that preserve the variance of the original data.
This restriction also ensures that

"$#&%('
is bounded and that

the optimization is well posed. We can define an extension
of problem (1) to seek N linearly independent projection
vectors, as follows:

�����9 ! �: ; < � "$#&%
; '

(2)

s.t. =7>	?@�BA�DC2 2 3 ; 2 2/�E6F�HGI�E6/�������	�KJH�
where 3 ; are the rows of the matrix W and

% ; �L3 ; � .
The constraint =7>	?M�NA�OC guarantees that the N projec-
tion directions are linearly independent. As an alternative,
the projection directions could be identified one at the time,
using a structure removal approach [8] that prevents the al-
gorithm from choosing the same projection direction twice.

Instead of dealing with this strict constraint, we can solve
the relaxation of problem (2), defined by:�����9 ! �: ; < � "$#&%

; 'QPR+ -/. 21=7>	?M�S2 (3)

s.t. 2 2 3 ; 2 2/��6F�TGU�E6/�������	�KJT� (4)

The term
+ -/. 21=7>	?M�S2 guarantees that the matrix W is full

rank for any feasible solution to the problem. Moreover,
because of the constraints 2 2 3 ; 2 2V�W6 , combined with the
Hadamard inequality:

21=7>	?@�S2,X �Y; < � 2 2 3
; 2 25��6F� (5)

we have that: + -/. 21=7>	?@�S2,XZC[� (6)

where equality holds when W is orthonormal. Therefore,
the two problems (2) and (3) are asymptotically equivalent
when sphered measurement data is used to estimate the un-
mixing matrix, and the sources are truly uncorrelated. In
this case, in fact, the term

+ -/. 21=7>	?M�S2 in (3) forces the iter-
ates of the solution to remain inside the feasible set, and it
approaches zero when the optimal solution is attained.

We can show that the modified Projection Pursuit frame-
work defined by (3), satisfies the basic assumption behind
all ICA methods that the statistical mutual dependence be-
tween the reconstructed signals

% ;
is minimized. If we add

to the objective function in (3) a constant term equal to the
entropy of the measurement data

"$# � ' , we can rewrite it
as: �����9 ! �: ; < � "$#&%

; 'QPR+ -/. 21=7>	?M�S2 P$"$# � ' (7)

� �[\ ]9_^ #&% ����������� % � ' �
since

"$# � ' � "$# � '`PD+ -/. 21=7>	?M�S2 , thus proving that the
optimization problem (3) satisfies the redundancy reduction
principle [2].

Although the framework defined by the objective func-
tion (3) bears similarities with other ICA methods, the pro-
posed algorithm presents several novel aspects:a The pdf of the reconstructed source signals

*@b
c
is es-

timated directly from the data, rather than being mod-
eled using a fixed or adaptive parametrization. As a
consequence, the estimation of the unmixing matrix
does not require the definition of a contrast function.a The constraints (4) guarantee that the method is a true
Projection Pursuit algorithm, which seeks the set of
N projections maximizing the total negative entropy,
while preserving the data variance .
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a A new algorithm that is capable of efficiently enforc-
ing the constraints is developed. The resulting opti-
mization technique does not require the selection of
any learning parameters.

The next section is dedicated to the description of such as-
pects.

3. JOINT ESTIMATION OF UNMIXING MATRIX
AND PDF OF THE SOURCE SIGNALS

The problem defined in (3) involves the constrained maxi-
mization of the following objective function:

��# � ' � ! �: ; < � "$#&%
; ' PR+ -/. 21=7>	?M�S2 (8)

� �: ; < � ��� + -/. * b
c # 3 ; � '��(PR+ -/. 21=7>	?M�S2,�
where 3 ; are the rows of the matrix W. Given a batch of
data of size M, we can approximate the expectation in (8)
with its ergodic average:

��# � '�� 6� �: ; < �
	:
 < � + -/. * b
c # 3 ; ��� 
�
 'QPR+ -/. 21=7>	?M�S2,� (9)

where � � 
�
 is the � th column of the sphered data matrix.
A universal model is proposed where the

*@b
c
are directly

estimated from the data, using a kernel density estimation
technique [14]. When a suitable kernel is chosen (see [14])
this estimator is asymptotically unbiased and efficient, and
it is shown to converge to the true pdf under several mea-
sures. The marginal distribution of the source signals can
be approximated as:* b
c #&% ; ' � 6��� 	:� < � ��� % ; !�� ; �� �T� (10)

where
�

is the kernel bandwidth and
�

is a gaussian kernel:� #��@'��� 6� � �"!$#&%�'' � (11)

The kernel centroids � � ; are equal to:

� ; � �D3 ; ��� � 
 � �:( < �*) ; (,+-(.� � (12)

One of the advantages of the kernel estimate defined by (10)
is that it is a continuous and differentiable function of the

unmixing matrix elements w

; /
. For example its gradient

with respect to 3 ; can be written as:0  c * #&% ; ' � 6���21 	:� < � � � #&% ; ! 3 ; � � ' ��� % ; ! 3 ; � �� � �
(13)

Evaluating the estimates of the pdf of the source signals at
the data points, we obtain:

* b
c # 3 ; ��� 
�
 ' � 6��� 	:� < � ��3 3 ;54 � � 
�
 ! � � � 
76� 8�� (14)

If we write the objective (8) as follows:��# � ' � ��9/# � 'QPR+ -/. 21=7>	?M�S2,� (15)

then we can re-write
�:9

(W) replacing the marginal pdfs
*@b
c

with the kernel density estimates:

;=<?>A@CBEDGF: H IKJ5LNM OQPSRUTV"WYX:Z IKJ.[]\2^ H,_S`,H ZW a2b (16)

c TV F: H IKJ X: deIKJ M OQP R TV"W X:Z IKJ [ 3:f H 4hg5i dej _ g5i Z j 6W 8 blk
The optimization problem becomes:

max9 6� �: ; < �
	:
 < � + -/. R 6��� 	:� < � ��3 3 ; 4 � � 
�
 ! � � � 
 6� 8 b

P + -/. 21=7>	?M�S2 (17)

s.t. 2 2 3 ; 2 2/�E6F�HGI�E6/�������	�KJ8� (18)

Given the sample data � � 
�
 �e���O6/�������	� � , the objective
(17) is a non-linear function only of the elements of the ma-
trix � . The parameter

�
controls the smoothness of the

functional and its optimal value is a function of the sam-
ple size (

� � 6/� C$m � # �onqp ' [14]. Our simulation experi-
ments show that variations up to r�s�Cut from the default
value do not affect the performance of the algorithm signif-
icantly. Using the FFT algorithm, the objective function is
evaluated at a cost proportional to v # J � + -/. 1 �E' , while
the J 1

derivatives can be computed with a number of oper-
ations proportional to v # J 1 � + -/. 1 �E' .

If a method is devised to remove the constraints (18),
then the unconstrained optimization can be performed with
a suitable algorithm, such as the Quasi-Newton method or
the Conjugate Gradient algorithm. Such removal is achie-
ved by operating the substitution:
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3 ; � �3
;

2 2 �3
; 2 2 � GI�E6/�������	�KJH� (19)

Using the transformation (19), the matrix � can be written
as � � �� # � �� , with:

�� �
��
� 2 2 �3 �/2 2 C

. . .C 2 2 �3��[2 2
� �
� � (20)

thus �� � �� � . Then:+ -/. 21=7>	?M�S25� ! �: ; < � + -/. 2 2 �3
; 2 2 PR+ -/. 21=7>	? ��S2 � (21)

The derivatives with respect to �) ; / are thus computed as:� #&+ -/. 21=7>	?M�S2 '� �) ; / � ! �) ; /2 2 �3
; 2 2 1 P
	 # ���� ' # ��
 ; / � (22)

When � is orthogonal ( � # � � � � ), we have:# ���� ' # � � �� # � # ��� ' # � � �� # 1 ��L� (23)

and the gradient coefficients in (22) are identically zero.
Therefore, the second term of the cost function (17) no lon-
ger enters the optimization procedure if the matrix � is
close to orthogonal. The calculation of the gradient of the
first term of the cost function is slightly more involved and
only the final result is reported in (24).

� ��9/# �� '� �) ; / � 6� 	:
 < � !
	:� < � \ � / 
 ! � / � ! �3 ; # � � 
�
 ! � � � 
 ' �) ; / a �3 ; \ � � 
�
 ! � � � 
 a � 3 �3 ;54 � � 
�
 ! � � � 
76� 8� 1�� 	:� < � ��3 �3 ;54 � � 
�
 ! � � � 
76� 8 (24)

4. SIMULATION RESULTS

In order to evaluate the proposed algorithm, we performed
a first simulation experiment where 1000 independent re-
alizations of the six pdfs listed in Table 1 were generated,
with sample sizes ranging from 500 to 5000. These syn-
thetic sources were mixed using randomly generated, full
rank matrices (condition number X 20), and the separation
was attempted with each of the following algorithms: the
original InfoMax ICA [1], the Extended InfoMax ICA [4],
Cardoso’s Jade [5], and our algorithm. The software for
these ICA algorithms was downloaded from the webpages
of the authors.

The results of this first experiment clearly show that
the proposed algorithm outperforms the other ICA meth-
ods (Figure 1). In particular, only the non-parametric ICA

is capable of accurately estimating sources #3, #5 and #6,
which the other algorithms fail to separate. The fact that
distributions #3 and #6 are skewed and almost zero-kurtotic,
results in a mismatch between their actual pdf and the para-
metric model assumed by the InfoMax algorithms. More-
over, the fact that only the fourth-order cumulants are used
and the skewness information is ignored, might explain why
Jade fails to separate these sources as well. Figure 2 shows
the kernel density estimate of the pdf of source #3, as it
is reconstructed by each algorithm, using 3000 data sam-
ples. Even for standard sub-gaussian or super-gaussian dis-
tributions (sources #1,#2, and #4), the proposed algorithm
outperforms the existing methods, showing the benefits of
accurately modeling the pdf of the source signals.

In a second experiment, we generated 100 realizations
of each of five sources with skewness uniformly varying be-
tween 0 and 1, all with a theoretical kurtosis equal to 0.75.
These synthetic signals were mixed, one at the time, with
an independent gaussian source and the separation was at-
tempted with each of the aforementioned algorithms. Ide-
ally, an increase in the source skewness should facilitate the
separation, because of the larger deviation from gaussian-
ity. The results of this experiment (Table 2) demonstrate
that standard ICA algorithms are not capable of accurately
separating skewed sources, but, rather, their performance is
inversely related to an increase in the skewness of the sour-
ces to be reconstructed. The proposed method, on the other
hand, takes full advantage of the increased deviation from

gaussianity to improve the separation performance. Because
it is not known a-priori whether the source signals have an
asymmetric distribution or not, it is not possible in general
to remove the skewness through pre-processing of the data.
Therefore, only a non-parametric universal model for the
pdf of the sources guarantees an accurate separation, when
no a-priori knowledge on such pdfs is available.

In a third experiment, we evaluated the convergence
properties of each ICA algorithm. The goal was to mea-
sure the approximate number of data samples required by
each method to achieve a median SNR of at least 20dB.
For this purpose, we created mixtures of four independent
sources with super-gaussian (kurtosis

�
2.2) symmetric pdf

and we averaged the separation results over 100 simulations,
for different sample sizes. The choice of standard super-
gaussian sources guarantees that the experiment is unbiased,
since all ICA algorithms are capable of separating this type
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Table 1. Distribution of the synthetic sources used in the first simulation experiment (see [15] for a description of the
distributions generated with the Power Method).

Source# Source type Skewness Kurtosis
1 Power Exponential Distribution ( � = 2.0) 0.0 -0.8
2 Power Exponential Distribution ( � = 0.6) 0.0 2.2
3 Power Method Distribution (b=1.112, c=0.174, d=-0.050) 0.75 0.0
4 Power Method Distribution (b=0.936, c=0.268, d=-0.004) 1.50 3.0
5 Normal Distribution 0.0 0.0
6 Rayleigh Distribution (

�
= 1) 0.631 0.245
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Fig. 1. First simulation experiment: I-InfoMax ICA, II-Extended InfoMax ICA, III-Jade, IV-Non-parametric ICA. The separation results
for the six different sources of Table 1 are averaged over 1000 simulations. The accuracy of the separation is measured in terms of median
log signal-to-noise ratio (SNR), defined as T�� M OQP J <�� XZ IKJ ���Z
	 � XZ IKJ > � Z _

�� Z B � (dB), where � is the original signal and
�� is the

reconstructed signal. For standard sub-gaussian or super-gaussian sources (#1, #2, and #4) the non-parametric ICA outperforms the other
methods. Moreover, it is capable of accurately separating sources #3, #5, and #6, which the other algorithms fail to separate. The vertical
bars extend between the 25% and the 75% percentiles.
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Table 2. Second simulation experiment. The performance in separating mixtures of a gaussian source with one of five types
of skewed sources (kurtosis

�
0.75) is investigated. The median SNR (in dB) along with 25% and 75% percentiles are

reported for 100 runs (averaged over the two sources). For increasing skewness values, the non-parametric ICA clearly shows
a substantial performance improvement, while the other ICA algorithms present a degradation in the separation performance.

skewness = 0 skewness = 0.25 skewness = 0.5 skewness = 0.75 skewness = 1.0
�

snr 25% 75%
�

snr 25% 75%
�

snr 25% 75%
�

snr 25% 75%
�

snr 25% 75%

Original InfoMax 17.0 10.5 25.1 15.9 9.7 21.9 13.6 9.3 21.7 13.4 7.7 18.8 10.5 6.5 17.2

Extended InfoMax 10.0 5.6 16.3 8.5 5.3 15.1 8.0 5.3 14.1 8.4 5.3 14.9 7.4 5.1 13.8

Jade 18.7 15.2 23.0 17.6 13.7 22.8 16.9 13.1 21.8 15.3 11.3 19.2 15.4 12.3 20.0

Non-Parametric ICA 19.2 13.8 25.0 24.4 18.9 28.8 25.7 18.4 31.8 33.0 27.4 36.7 42.7 36.8 47.6
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Fig. 2. Pdf of source#3 estimated from the signals recon-
structed by each BSS algorithm. Only the proposed algo-
rithm accurately estimates the pdf of this source.

of signals accurately. Our results show that the proposed
method is able to achieve the required quality of separation
(20dB) with only 750 samples, while the Extended InfoMax
ICA and Jade require almost twice as much data samples.

5. CONCLUSIONS

We introduced a novel non-parametric blind signal sepa-
ration technique based on a true Projection Pursuit frame-
work. Simulation results show that the proposed approach
is capable of separating mixtures of a broad class of signals,
with a noticeable performance improvement when compa-
red to existing ICA algorithms. The ability of separating ar-
bitrarily distributed sources, combined with favorable con-
vergence properties, and a relatively modest computational
complexity, establish the non-parametric ICA algorithm as
an attractive alternative to existing ICA methods. We would
like to thank Dr. Lieven Vandenberghe for his valuable sug-
gestions on the optimization methods.
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