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ABSTRACT

Blind source separation (BSS) of audio signals in echoic
environments such as an office room is still a very challeng-
ing problem. Here we approach the problem from a practi-
cal perspective and shed light on how robust a two channel
echoic parametric demixing can get. We assume that an ora-
cle (i.e. a perfect estimator) provides a truncated estimate of
the mixing FIR filters for a given source configuration. This
way we can study the properties of a parametric demixer us-
ing the adjoint of the truncated mixing matrix. For several
degrees of truncation, we compute how the separation SNR
varies as a function of the uncertainty of the true source
position. The true source position is uniformly distributed
within a sphere of radius R around an assumed position, to
reflect the fact that parameters of interest are imprecisely es-
timated. Simulations of artificial echoic mixings show that
the higher order demixing filters have little robustness to
position uncertainties (and therefore to errors of estimation)
while the overall performance remains almost constant be-
yond the second order approximation. This should represent
a guideline for what is practically achievable with a class of
BSS techniques in echoic environments.

1. INTRODUCTION

The Blind Source Separation and Independent Component
Analysis (ICA) problem has been under increased atten-
tion in recent years. Two international conferences (Aus-
sois 1999, Helsinki 2000) have been dedicated to these top-
ics, while many other signal processing related conferences
have presented relevant research. Although a number of
successful applications in image and medical signal pro-
cessing have been presented, BSS techniques have proved
only modest gains for audio signal processing [1, 2]. This
may not come as a surprise to the array processing com-
munity, where results of signal enhancement techniques are
modest in the case of a small number of sensors [3].

Several BSS methods are used to separate voices from
acoustic mixtures, which we divide into two classes. The
first class uses parametric mixing models and thus it reduces

the number of degrees of freedom of the identification prob-
lem, whereas the second class uses a full non-parametric (or
at least, not explicitly parametric) demixing scheme rather
than exploit the relative sparseness of the mixing model. We
call the former class parametric BSS and the latter nonpara-
metric BSS. Parametric BSS solutions have first been stud-
ied in the context of anechoic mixtures [4, 5]. In such cases,
only four parameters are needed: two delays and two attenu-
ations. Moreover, if microphones sensors are close enough,
the attenuations can be approximated to be unity, and only
delay parameters are used. For echoic environments, the
simple direct-path model can be used as a starting point for
a more complex mixing (or demixing) model [6].

Nonparametric mixing models are implemented either
in time-domain or frequency domain. Time-domain approaches
considers long FIR or IIR filters and adapt the filter co-
efficients to obtain independent outputs [7, 8]. Frequency
domain approaches use of a simple but useful observation:
at each frequency a convolutive mixing becomes a simple
multiplicative mixing. There is a caveat to this statement:
the window size to perform FFT has to be sufficiently large
compared to the room reverberation (see [9] for an analysis
of the simple delay operator). This remark implies the need
for long filters. Additionally, the permutation problem has
to be solved. Several approaches have been proposed. They
all use an ICA method to demix on each frequency indepen-
dently from one another and then use some criterion to find
the right permutation matrix [10, 11, 12, 13].

In this paper we approach the problem of echoic demix-
ing from a practical perspective and analyze the robustness
of the two channel echoic parametric demixing problem.
We perform demixing using FIR filters truncated to vari-
ous degrees of precision. For several degrees of truncation,
we compute how the separation quality, measured in terms
of the instantaneous SNR, varies as a function of the uncer-
tainty of the estimated source position.

In the next section we discuss the parametric mixing and
demixing models used in the present experiments. Section
3 defines the setup and robustness measures used. Section 4
presents experimental results. Section 5 concludes on what
is practically feasible in echoic environments.

144



2. PARAMETRIC MIXING MODEL

Assume a parametric mixing model with two sources and
two microphones of the form:

x1(t) =
LX
k=0

ak11s1(t� �k11) + ak12s2(t� �k12) (1)

x2(t) =
LX
k=0

ak21s1(t� �k21) + ak22s2(t� �k22) (2)

where L is the number of echoic path the model uses. The
choice of L should take into account the room reverbera-
tion time. Furthermore, s1(�), s2(�) are the source signals,
x1(�); x2(�) are the measured signals, akij is the kth path at-
tenuation coefficient from source j to microphone i, and �kij
the corresponding delay. All the time variables are mea-
sured in samples. We assume the sampling frequency is
sufficiently high and the distance between microphones and
between sources is sufficiently large in order to induce inte-
ger delays. Let us denote by A the 2 � 2 matrix of mixing
filter transfer functions:

A(z) =

�
A11(z) A12(z)
A21(z) A22(z)

�
(3)

Aij(z) =
LX
k=0

akijz
��kij (4)

Techniques to extract the sources s1 and s2 from the mix-
tures x1; x2 range from methods that aim toward source
separation and use either the inverse of the mixing matrix
or its adjoint [4, 5], to techniques that aim mostly for sig-
nal enhancement such as the multiple delay-and-sum beam-
former (when only information of arrival times is required)
or matching filters (when the full mixing matrix is used)
[14]. In this paper we discuss the use of the adjoint matrix
as a demixing solution.

Let W = adj(A), the adjoint of A, defined by:

adj(A) =

�
A22(z) �A12(z)
�A21(z) A11(z)

�

When applied on (x1(�); x2(�)), the outputs are:�
u1
u2

�
=W

�
x1
x2

�
(5)

u1(t) =
PL

k=0 a
k
22x1(t� n)� ak12x2(t� n)

u2(t) =
PL

k=0�a
k
21x1(t� n) + ak11x2(t� n)

(6)

and combined with (1,2) we obtain:

u1(t) =
LX

n;m=0

(ak22a
m
11 � ak12a

m
21)s1(t � n�m) (7)

u2(t) =
LX

n;m=0

(ak22a
m
11 � ak12a

m
21)s2(t � n�m) (8)

Such a solution is good in practice in both quality of the
output (i.e. little artifacts) and quantity of the cross-talk
(ideally zero). However, it requires knowledge about the
room impulse responses (i.e. mixing matrix A) and that is
a daunting task when performed blindly. As we show next,
a truncated approximation of the full mixing matrix yields
good separation results. This suggest to use a lower dimen-
sional parameterization of the mixing process. The issue
then becomes, how robust is separation in the presence of
uncertainties about the impulse response coefficients?

Next we analyze the question of robustness of paramet-
ric demixing solution in the case of echoic mixing. The
problem can obviously be formulated in the case of more
than two channels. However, we only consider a two mi-
crophone array due to the potential improvement over sin-
gle microphone speech enhancement solutions and the eco-
nomic potential.

3. APPROACH TO MEASURING ROBUSTNESS

Consider a mixing matrix of (sparse) FIR filters A as in (3),
where the mixing coefficients akij are ordered according to
their arrival time. We define the truncation of order q of
this matrix as the 2 � 2 matrix of FIR filters obtained by
truncating Aij to its first q + 1 nontrivial (i.e. non-zero)
terms. Thus:

truncq(A) =

" Pq

k=0 a
k
11z

��k
11

Pq

k=0 a
k
12z

��k
12Pq

k=0 a
k
21z

��k
21

Pq

k=0 a
k
22z

��k
22

#

(9)

The adjoint matrix of this truncated matrix, gives rise to an
demixing filter denoted Wq . Thus Wq = adj(truncq(A)).
Note that the two operation commute in this case:

truncq(adj(A)) = adj(truncq(A))

Thus Wq is the truncated matrix of the complete demixing
matrix W = adj(A).

Consider the setup of an echoic environment as in Fig-
ure 1. We assume specific reflection coefficients on floor,
walls, and ceiling, two microphones placed at P1 and P2,
and two independent sources of unit variance white noise
positioned at V1 and V2 (whose position will change). As-
sume mixing filters are given for a nominal position of V2,
say A(V 0

2 ), and a demixing filter Wq is constructed accord-
ing to (9). We evaluate separation performance for the case
when the actual position of the second source (V2) differs
from the assumed position V 0

2 .
To do so we first introduce and explicitly compute the

SNR gain of the overall scheme. Since we assumed the
sources are unit variance white noises, the input SNRs are:

SNRi
1 =

kA11k
2

kA12k
2
; SNRi

2 =
kA22k

2

kA21k
2

(10)
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where the norms are given by:

kAijk
2 =

LX
k=0

jakijj
2 (11)

The output SNRs are given by:

SNRo
1 = kW11A11+W12A21k

2

kW11A12+W12A22k
2

SNRo
2 = kW22A22+W21A12k

2

W21A11+W22A21k
2

(12)

Hence the SNR gain is measured by:

G1 = 10 log10

�
kW11A11+W12A21k

2

kW11A12+W12A22k
2

kA12k
2

kA11k
2

�
(13)

G2 = 10 log10
�
kW21A12+W22A22k

2

kW21A11+W22A21k
2

kA21k
2

kA22k
2

�
(14)

Having established the robustness criterion, now we de-
fine how we represent uncertainty in the estimates of the
demixing parameters. For the nominal configuration of sources
(V1; V 0

2 ) the mixing matrix is A0. To it there correspond a
series of demixing matrices defined via:

Wq = adj(truncq(A0)) = Wq(V
0
2 ) (15)

and indexed by the truncation order q. Assume now that
one of the sources (which in our setup will be source num-
ber two) is in fact located in a different position, say V2.
Then, the true mixing matrix is M = M (V2) and the over-
all performance of the demixing scheme is characterized by
the gains (13) computed for (M;Wq). Thus we obtain two
position dependent gain functionsGq

1(V2), G
q
2(V2), indexed

by the truncation order q. Assuming the position V2 is uni-
formly distributed in a ball of radius r around the nominal
position V 0

2 , we want to estimate the average SNR gain of
this demixing scheme. Then the quantities we are interested
in are:

G1(q;R) =
1

V ol(BR)

Z
BR(V

0

2
)

G1(V2)d
3V2 (16)

and G2(q;R) defined similarly.
Next we present experimental separation results for the

setup presented before. Since the behavior of G1 and G2 is
very similar we concentrate only on the former.

4. EXPERIMENTAL RESULTS

An echoic room has been simulated as in Figure 1 with re-
flection coefficients (0:5; 0:5; 0:2) on floor, walls, and ceil-
ing. This roughly corresponds to a reverberation time of
about 100msec. The microphone distance was 10cm and
the distances between the sources and mid-point between
microphones were 1m and 1.5m respectively. The first source
was fixed on the line connecting the microphones while the

Fig. 1. Setup Configuration.

second source was rotated in increments of 30 degrees from
�120o to +120o. Each such position was a nominal posi-
tion for robustness measurement. Impulse responses were
computed by taking into account sound bouncing of the
wall up to order 5 at a sampling frequency of 16kHz, in
a ray-tracing model. On average, we obtained about 200
coefficients per channel (see Figure 2). The truncation or-
der ranged from 0 (direct path) to 10 (direct path plus 10
echoes). The ball radius varied from 5cm to 1m in incre-
ments of 5cm. On each spherical corona we computed the
gain for 288 points and then averaged out the result to ob-
tain an estimate of G1 as in (16). The average SNR gains
are presented in Table 1 for � = 30o and � = 60o.
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Fig. 2. Impulse Responses: A11 (top-left), A12(top-right),
A21 (bottom left) and A22 (bottom right) for � = 90.

Figures 3-11 represent the variations of SNRs with re-
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qnr[m] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 6.05 5.94 5.67 5.36 5.19 4.90 4.69 4.46 4.22 3.98 3.72
1 6.80 6.10 5.77 5.52 5.37 5.09 4.89 4.65 4.41 4.16 3.89
2 8.01 6.02 5.61 5.34 5.17 4.89 4.68 4.44 4.21 3.97 3.71
3 8.93 5.83 5.31 4.97 4.78 4.49 4.29 4.05 3.83 3.60 3.35
4 9.29 5.89 5.35 5.03 4.83 4.54 4.33 4.10 3.87 3.64 3.39
5 9.54 5.88 5.32 4.99 4.79 4.50 4.29 4.06 3.83 3.61 3.36
6 9.75 5.92 5.36 5.02 4.82 4.53 4.32 4.09 3.86 3.63 3.38
7 10.62 5.80 5.25 4.92 4.71 4.42 4.22 3.99 3.77 3.54 3.30
8 12.01 5.75 5.20 4.87 4.67 4.38 4.18 3.95 3.74 3.51 3.27
9 12.00 5.73 5.19 4.86 4.66 4.37 4.17 3.94 3.73 3.50 3.26
10 12.10 5.75 5.20 4.87 4.67 4.38 4.18 3.95 3.73 3.51 3.27

qnr[m] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0 7.48 5.71 5.57 5.25 4.71 4.42 4.12 3.77 3.52 3.34 3.12
1 8.59 6.22 6.00 5.69 5.12 4.81 4.51 4.13 3.86 3.66 3.43
2 10.17 6.83 6.44 6.06 5.44 5.10 4.77 4.39 4.11 3.90 3.66
3 11.62 6.97 6.44 6.02 5.37 5.02 4.69 4.30 4.03 3.82 3.58
4 12.20 7.16 6.61 6.16 5.50 5.14 4.80 4.40 4.12 3.90 3.65
5 12.42 7.14 6.58 6.13 5.47 5.11 4.77 4.38 4.09 3.88 3.63
6 12.70 7.20 6.62 6.16 5.49 5.13 4.78 4.39 4.10 3.89 3.64
7 13.50 7.18 6.56 6.09 5.43 5.06 4.72 4.33 4.05 3.84 3.59
8 14.02 7.31 6.67 6.19 5.52 5.14 4.79 4.40 4.11 3.89 3.64
9 14.04 7.32 6.67 6.19 5.52 5.14 4.79 4.40 4.11 3.89 3.64
10 14.69 7.21 6.57 6.09 5.43 5.06 4.72 4.32 4.04 3.83 3.59

Table 1. SNR gains in [dB] for � = 30o (top) and � = 60o (bottom).
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Fig. 3. SNR Gain for � = �120o. Text describes the family
of plots in the left and right figure.

spect to the approximation degree q, for 11 values of r (from
0 to 1:0m in increments of 10cm: r = 0; 0:1; 0:2; : : : ; 1:0)
and the variation of SNRs with respect to the distance r, for
11 values of q (from 0 to 10), in the left and right positions
respectively. The left family of 11 plots is parameterized
by q, where q = 0 is given by continuous line, q = 1 by
dashed line, etc. In general, the higher is q the higher the
average gain, but not always. The right family of 11 plots
is parameterized by r, where r = 0 is given by continuous
line, r = 0:1 by dashed line, etc. The higher is r the lower
is the average gain.

These plots show that a significant SNR improvement
is obtained by higher order demixing schemes, when the
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Fig. 4. SNR Gain for � = �90o

source positions are known precisely (zero error). However,
in the presence of uncertainties performance degrades fast.
Thus, as little as 5 cm makes the performance insensitive
to the modeling degree the angles � = �120, � = �30,
� = 30 and � = 120), whereas at � = 0, the performance
degrades when increasing the model order. On the other
hand, for an uncertainty as little as 10cm, the SNR gain in-
creases by only 1-3dB when going from the lowest order
model (direct path) to the highest complexity model consid-
ered here (direct path + 10 echoes). This shows that higher-
order-model based demixing behaves almost as well as the
direct-path-only demixer in the presence of position uncer-
tainties.
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Fig. 5. SNR Gains for � = �60o
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Fig. 6. SNR Gain for � = �30o

5. CONCLUSIONS

We studied the behavior of a class of two-channel para-
metric demixing schemes based on room modeling under
parameter estimate uncertainties. Assuming that an oracle
(e.g. a precalibration) provides the FIR filter mixing matrix
for a specified position of the sources, we analyzed the in-
fluence of the position uncertainty to the SNR gain for sev-
eral degrees of approximation. In particular we varied the
demixing filter order by considering up to ten multi-paths,
and the position uncertainty from 0 to 1m, in increments of
5cm. We computed analytically the SNR gain for the two-
microphone demixing scheme based on the adjoint of the
mixing matrix.
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Fig. 7. SNR Gain for � = 0o
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Fig. 8. SNR Gain for � = 30o
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Fig. 9. SNR Gain for � = 60o
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Fig. 10. SNR Gain for � = 90o
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Fig. 11. SNR Gain for � = 120o
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The results showed a dramatic degradation in SNR per-
formance for as little as 5cm uncertainty in source position.
They also showed that higher order models do not sensi-
bly improve compared to the pure direct path or lower order
demixing schemes. Moreover, performance degrades when
increasing the demixing model order in some cases.

A higher order parametric model identification algorithm
would be expensive while its demixing scheme offers only
marginal improvements, if any, under the reasonable as-
sumption that parameters are not estimated perfectly (as mod-
eled by our uncertainty in source position). Therefore we
suggest that further research avoid increasing the mixing
model complexity (e.g. by complex parameterization) and
instead concentrate on lower order mixing models.

6. REFERENCES

[1] K. Torkolla, “Blind separation for audio signals: Are
we there yet?,” in First International Workshop on In-
dependent component analysis and blind source sepa-
ration, Aussois, France, Jan. 1999, pp. 239–244.

[2] F. Asano and S. Ikeda, “Evaluation and real-time
implementation of blind source separation system us-
ing time-delayed decorrelation,” in Proceedings of
the Second International Workshop on ICA and BSS,
P. Pajunen and J. Karhunen, Eds. 2000, Otamedia.

[3] M. Brandstein and D. Ward, Eds., Microphone Arrays,
Springer, 2001.

[4] T. J. Ngo and N.A. Bhadkamkar, “Adaptive blind sep-
aration of audio sources by a physically compact de-
vice using second order statistics,” in First Interna-
tional Workshop on ICA and BSS, Aussois, France,
Jan. 1999, pp. 257–260.

[5] Justinian Rosca, Joseph Ó Ruanaidh, Alexander Jour-
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