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ABSTRACT

We propose an algorithm and architecture for real-time blind
source separation of linear convolutive mixtures using or-
thogonal filter banks. The adaptive algorithm derives from
stochastic gradient descent optimization of a performance
metric that quantifies independence not only across the re-
constructed sources, but also across time within each source.
The special case of a Laguerre section offers a compact rep-
resentation with a small number of filter taps even under
severe reverberant conditions, facilitating real-time imple-
mentation in a modular and scalable parallel architecture.
Simulations of the proposed architecture and update rule
validate the approach.

1. INTRODUCTION

The signal processing problem of separating and deconvolv-
ing observed mixtures of unknown independent sources with-
out knowledge of the mixing medium, is known as blind
source separation (BSS) or independent component analy-
sis (ICA). The problem is addressed extensively in the lit-
erature and different algorithms for a wide range of appli-
cations in speech processing, wireless communications and
biomedical signal processing exist.

BSS algorithms have been studied in the information-
theoretic and statistical signal processing framework. Max-
imization of entropy of transformed output signals and min-
imization of mutual information of output signals are main
approaches in deriving learning algorithms from information-
theoretic perspective [1, 2, 3]. Maximum likelihood estima-
tion (MLE) approach leads to same algorithms as infomax
principle. In statistical signal processing, the contrast func-
tions are chosen with respect to statistical measures of inde-
pendances, i.e. cumulants and nonlinear moments [4, 5].

For linear convolutive mixtures, algorithms have been
formulated in time and frequency domain based on the above

This work was supported by ONR YIP (N000149910612) and NSF
Career (MIP-9702346).

A(z)

W(z)

W(z)

^

sources sensorsindependent
components

s(k) x(k)

y(k)s(k)

y(k)

independent

N NM

N N




Fig. 1. Problem Statement

principles. Amari et. all [6] derived a time-domain algo-
rithm based on a modified maximum entropy formulation.
The same algorithm was obtained by Cohen and Cauwen-
berhgs [7] using nonlinear moments. If it can be assumed
that the sources are non-stationary, variety of methods, based
on the second-order statistics, can be used for separation
[8, 9]. The formulation in the frequency-domain is com-
putationaly more appealing, but the ICA indeterminacy in
each frequency been has to be solved [10, 11]. There are
also algorithms that combine two domains, with the sepa-
ration criterion expressed in time-domain, while the rest is
done in frequency-domain [12, 13].

Our objective is to reduce the complexity of algorithms
by choosing an appropriate representation of the mixing me-
dium. It has been shown that a Laguerre filterbank offers a
versatile and compact filter basis for use in adaptive filtering
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applications [14, 15], and the work presented here extends
the use of Laguerre and other orthogonal filter banks to the
domain of Independent Component Analysis.

2. PROBLEM STATEMENT

Figure 1 schematizes the problem: unknown independent
sources propagate through an unknown medium and are ob-
served by an array of sensors. The task is to recover sources
from observed signals using only the assumption that the
source signals are mutually independent. The sensors inputs������� are convolutive mixtures of channel impulse response
and input signals � �����

���������
	��
������� � ��� � ��������� (1)

where ��� � � ��� denotes channel impulse response between
source � and sensor � at time � . Matrix � � ��� is an � x  di-
mensional matrix, where  is the number of sources and �
is number of sensors. The assumption is that �"!# , since
in the case of more sensors than sources prior information
about sources is necessary for separation [16].

To recover the sources, the observed signals are pro-
cessed by a transformation matrix $ :

%&�����&� 	��
����� $ � ���'������������� 	��
()���
*$ �,+-� � �����.+-� (2)

where /0� � denotes the filter that is the inverted channel im-
pulse response �1� � and

*/0� � is a total impulse response from
source 23� to output signal 45� . We can rewrite the equa-
tions (1), (2) in the operator form [1]:

�������&� � �,6��87 � �����:9 (3)

%&�����&� $ �,6��87 �������:9;� *$ �,6��87 � �����:9 (4)

with

$ �,6=<>���?� 

� $ � ���)6�@ �

� �,6����


� � � ���)6�@

�
*$ �,6=<>���?� $ �,6=<>��� � �,6�� (5)

representing the 6 -transform of the channel, unmixing trans-
formation and total impulse response, respectively. The fol-
lowing notation 6 @ � 7 � �����:9�� � ���A�B��� is used. We can
formulated our aim as optimizing $ �,6�� such thatC D EF8G �

*$ �,6=<>�����IHKJL�,6�� (6)

where H is  x  permutation matrix and JL�,6�� is a diag-
onal matrix, where diagonal entries represent delayed delta
impulses M ��������� .

Fig. 2. Room impulse response

3. REPRESENTATION

The mixing matrix � �,6�� represents the physics of propaga-
tion between sources and sensors. As an example, consider
a sound source recorded in a room using a microphone. The
recorded signal will consist of a direct (delayed) copy of the
sound source and multi-path copies of signal, modified by
the environment. The channel impulse response in this case
is the room impulse response, which is dependent on rever-
beration and absorption characteristics of the room. An FIR
filter representing typical room impulse response, as shown
in Figure 2, requires a large number of delay elements (8192
in this case) [17]. This damped response can be compactly
represented using a Laguerre filter bank, a cascade of a low-
pass filter followed by identical all-pass filters. The transfer
function of a Laguerre filter is given by

N F �,6����IO � �,6��87 OQP5�,6��:9 F <R�S�IT�<�UV<>W1X X X (7)

with

O � �,6����ZY P @�[]\P @�[]^�_�` and

OQP-�,6���� ^ _�` @�[P @�[]^�_�` X (8)

Parameter � represents the pole location, and for � �RT the
Laguerre filter is reduced to a simple delay line. Table 1
compares the mean square error between the 8192-tap FIR
filter and Laguerre filter responses for different length of La-
guerre filters and different pole location � . For � �aT�X b and
filter length �cU3TdW5e , the approximated response is shown in
Figure 3.

To implement the inverting or unmixing matrix of fil-
ters, we can employ different structures: using FIR filters
to approximate the inverse solution requires a large num-
ber of taps, and IIR adaptive filters can result in instability,
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Fig. 3. Approximation of the room impulse response of
Figure 2 using a Laguerre filter bank with a = 0.5 and filter
length = 1024.

filter length a = 0.2 a = 0.5 a = 0.7

256 8.1 8.2 8.7
512 6.4 7.9 8.6

1024 4.6 6.4 8.5
2048 2.8 4.8 8.1

Table 1. Mean square error between the room impulse
response and its approximation with Laguerre sections of
finite length.

especially if the impulse response has non-minimum phase.
Laguerre filters provide local stability due to fixed poles, but
still have advantages of IIR filter. As shown, the room im-
pulse response can be represented by using fewer Laguerre
filters, and therefore a lower number of filters for inverting
the response.

4. ADAPTIVE SOURCE SEPARATION

The mixing coefficients / � � ����� can be expanded through a
set of orthogonal functions

� F :
/0� � �������a	��
F ��� � � � ����� � F ����� (9)

with coefficients � � � ����� equal to

� � � �����&�R	��
�-��� /0� � ����� � F �����]X (10)

Similarly, the total impulse response is:

*/0� � ������� 	��
F ���
*� � � ����� � F ����� (11)

*� � � ������� 	��
�-��� */0� � ����� � F �����]X (12)

Substituting (11) in equation (2), we obtain:

%&����� � 	��
����� *� � ����� � �,6��87 � �����:9:X (13)

The cost function used as an optimization criterion is a
scalar measure of output signal independence [5]	 � U

e



� � P




� � P

�
� � @ �
�
�Q7 4V� ����� 4 � ��� �����:9=��� M�� � M � � ���

(14)

where � 7d9 is the expectation operator and � is a normal-
ization constant. This cost function not only attempts to
separate, but also to deconvolve (whiten) the outputs. For
the simplicity of the derivation, we will also assume that the
sources are white to start with, that is:�Q7 2 � �������-� 2�� ��� � 2 �:9;� M � � M���� (15)

which transforms (14) into	 � U
e 
 ��� ��� �

� 
� � � � ( *� � � � ��� *� � � �,+-� � � ����� � ( ��� ����� ��� M�� � M � ���
�

(16)

Gradient descent of (16) produces an update rule: *� �,+-� � �"!$#&%' 	
�(!*)+� *� �,+-� (17)

�,��- 
 � � � �,6���7 %&�����:9.� ( �,6��"/ %$0 ����� *� � ���214365
where ! is the learning rate constant. A stochastic on-line
weight adaptation rule is obtained by removing the expec-
tation operator in (18) [5]. Independence of output sig-
nals beyond second-order statistics (removal of higher or-
der cummulants) is obtained by applying component-wise
antisymmetric nonlinear functions 7 �V� and 8 �V� [4, 5]. The
selection of the functions 7 �V� and 8 �V� depends on the statis-
tics of source signals and have been studied extensively in
literature. Finally, substituting

*� �,6��?� � �,6�� � �,6�� � �,+-� �9!*)+� � �,+-� (18)

� 

� � � �,6���7 7 � �,%&����� � �:9:� ( �,6��;- 8 � %$0 ����� � � � ���23$5
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Fig. 4. Parallel architecture: (a) example system block diagram for  �aW1< � ��� , and
N ��� , (b) unit cell diagram.

When applying delay line for the filters � � �,6�� � 6 @ �
we retrieve the convolutive ICA algorithm derived in [6, 7].

4.1. Laguerre Filter Bank

Laguerre filter bank is a special case of orthogonal filter
bank that offers compact representation. The update rule (18)
for Laguerre filter becomes: � �,+-� �9!*)�� � �,+-� (19)

� 

�
N � �,6���7 7 � %&����� �:9 N ( �,6��;- 8 � %$0&����� � � � ���23$5

which can be rewritten by rearranging contributions to the
update over time as: � �,+-� �9!*)�� � �,+-� (20)

� O � �,6��87 7 � %&����� �:9 
 � N ( @ � �,6��87 8 � %$0 ����� � � � ���:9 5?<
The problem with this form is that it is non-causal. When-
ever +�� � , the update of weight

� �,+-� depends on the future
outputs %&�����
	 �
�;� . The problem can be solved by de-
laying the update on the RHS side of (21) [6]. We propose
a modification of the rule, by omitting the noncausal terms
for which +�� � [7]. Therefore (21) simplifies: � �,+-� �9!*)�� � �,+-� (21)

� O � �,6��87 7 � %&����� �:9 (
����� N ( @ � �,6��87 8 � %$0 ����� � � � ���:9 5
For this learning rule, we propose the architecture shown

in Figure 4 � . An enlarged view of the unit cell is shown in
Figure 4 � . The sensor inputs ������� are presented at the bot-
tom of the system and fed to Laguerre filter banks. The

signals from the filter banks on bottom are projected across
the columns of the array. The outputs %&����� are obtained by
summing across the rows, from left to right. The output sig-
nals are passed through nonlinearities 7 �V� and 8 �V� , and they
propagate along the rows from the rigth. The inner product
of output signals and weights


 � ����< +-��� 

�
� � � �,+-� 8 � 4V� ����� � (22)

is accumulated along the columns of array and fed into the
filter bank on the top of system. The signals

6 � ����< +-�&�
(

�����

N ( @ � 
 � ����<,��� (23)

generated from the filter bank on top are projected along the
columns and multiplied with the low-pass version of signal7 � %&����� to generating the weight update.

The advantages of this architecture are local instanta-
neous computations, reduced complexity and scalability. The
architecture lends itself to efficient implementation using ei-
ther DSPs or custom parallel VLSI.

5. SIMULATIONS

We simulated our proposed architecture and learning rule in
a small system: two input source and two outputs (  � W )
with Laguerre filter length

N ��� . Inputs 2 P5����� and 2 � �����
are uniform white noise signals � 7 �KUV<�U89 . The weights*� �,+-�]<=+ �aT0X�X�X N �#U , are initialized with uniform random
weights � 7 �KUV<�U89 . For simple implementation, the func-
tions 7 and 8 are the identity map 7 � %&��� � ��� %&��� � and the
signum function 8 � % 0 ��� � ���������;� % 0 ��� � � .

All simulation results are referenced to the sources, in
terms of

*�
, because of the equivalence of the equations
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Fig. 5. Trajectory of the coefficients
*� � � �,+-� over time � for

the triangularized update rule

of the learning updates under any transformtion
*� �,6��.�� �,6�� � �,6�� . Figure 5 show the trajectories of all W�� W�� �

weights in
*�

over time. Figure 6 shows the impulse re-
sponses of the W�� W filters. It is clear that 4 P5����� corre-
sponds to � 2 P5����� and 4 � ����� to � 2 � ����� , which is one of
many valid solutions to this unmixing/deconvolution task.
The rate of convergence for the proposed architecture us-
ing Laguerre filters is approximately ten times faster than
the same architecture using simple delay line. One inter-
esting side effect of breaking time symmetry by ommitting
the non-causal terms in the update rule is giving rise to a
minimum phase response with minumum delay in the re-
construction of the sources.

6. CONCLUSION

In this paper, we have addressed the problem of blind source
separation of linear convolutive mixtures using general or-
thogonal filter banks. The implementation using Laguerre
filter banks offers a compact representation with reduced
number of taps, and a faster convergence, compared with
tapped delay line. Laguerre filters have a free parameter,
the pole location, which can be optimized for a particular
application. The proposed algorithm can be efficiently im-
plemented in a scalable parallel architecture, with local up-
dates.
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