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ABSTRACT

Recently, detection of seismic electric signals (SESs) in tel-
luric current data (TCD) observed using the VAN method
has attracted notice for short-term earthquake prediction.
However, since most of the TCD collected in Japan is af-
fected by train noise, detecting SESs in TCD itself is an
extremely arduous job. The goal of this research is to de-
rive a method for detecting SESs, which is difficult for VAN
method experts because of train noise. We believe that SESs
and train noise are independent signals. Therefore we at-
tempted to apply Independent Component Analysis (ICA)
to several TCD data sets which were measured at Matsushiro,
Nagano. As a result, train noise and SESs were successfully
separated using ICA.

1. INTRODUCTION

Since the great Hanshin earthquake in 1995, short-term earth-
quake prediction has been investigated as an emergent and
important research topic. Although some statistical meth-
ods are used for long-term earthquake prediction in con-
ventional seismology, it is obviously difficult to apply the
same statistical methods to short-term earthquake predic-
tion [1]. Three Greek physicists (Varotsos, Alexopoulos,
Nomikos) suggested the VAN method as one useful method
[2][3]. The VAN method is known to be an effective method
for short-term earthquake prediction based on observations
of telluric current data (TCD) in many observation points.
TCD is the measurement of the weak electric current flow-
ing within the surface layers of the Earth. In the TCD ob-
served using the VAN method, seismic electric signals (SESs)
are often detected before the occurrence of strong earth-
quakes. Several earthquakes were successfully predicted by
the VAN method in Greece. In recent years in Japan, TCD
has been recorded for research about the VAN method at
the Information Frontier Program on Earthquake Research
(RIKEN IFPER) [4].

However, in Japan, the effect of the train noise on TCD
is the most serious problem for short-term earthquake pre-

diction using the VAN method. SESs are hidden by train
noise because the amplitude of train noise is larger than the
amplitude of the SESs. So, it is difficult for even experts
of the VAN method to detect SESs hidden by train noise.
Therefore, short-term earthquake prediction seems to be im-
possible for VAN method experts.

Considering this background, we began research on au-
tomatic short-term earthquake prediction applying engineer-
ing methods to TCD instead of manually detecting SES by
experts of VAN method. In TCD that contains little train
noise, the neural network approach demonstrates good per-
formance [5]. So, the most important problem is the re-
duction of train noise. We have already tried to detect SES
buried in train noise by a Multi-Layer Perceptron with Back-
Propagation [6]. It seems effective for several training data
sets, but it is of doubtful application for general TCD. Thus
we believe we should first separate or reduce train noise ef-
fects by another method. In this research, we applied In-
dependent Component Analysis (ICA) [7] which separates
each independent source signal from a mixture of indepen-
dent source signals. We believe that train noise and SES
are independent source signals because the current generat-
ing mechanism may be different. Thus we assume TCD is
composed of train noise and SESs. So we believe that train
noise and SESs can be separated by applying ICA to the
TCD.

In this paper, we apply ICA to the TCD observed at
Matsushiro, Nagano, which is one of the observation points
where train noise have been very clearly observed, and then
evaluate the ICA results.

2. TELLURIC CURRENT DATA (TCD)

2.1. The observation method

TCD measures the electric potential difference between dipoles
at 2 points. The electrodes are Pb−PbCl2 pipe non-polarizing
dipoles (40 cm in length and 3 cm in outer diameter) and are
buried at a depth of 2 meters.

42 observation points have been installed mainly in the
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Fig. 1. Telluric Current Data!Jdp.2 of Matsushiro, Nagano on 20th of August, 1999!K

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
up-train 31 10 27 7 8 8 15 8 13 13 13 13 35 0 39 53

48 53 37
down-train 31 10 27 7 8 8 8 53 53 50 53 35 6 17 31

48 55 53 37

Table 1. Timetable (Nagano Railway Matsushiro Station)

Tokai and Hokuriku area since 1997. Each observation point
has either 8 or 16 dipoles in different directions because
the inherent noise of dipoles. Noise like SES which oc-
curs distant from the observation point is observed on every
dipole. If a noise is observed on either parallel dipole, the
occurrence point of the noise is not distant from the observa-
tion point. Thus, when the measured data of either parallel
dipoles is changed, the change is believed to be the effect of
inherent noise. We label each dipoles dp.1, dp.2, ..., dp.16.

TCD is sampled at 10 second intervals and telemetered
once a day to RIKEN IFPER. So TCD is expressed by time-
varying voltage data for each dipole. For example, Fig.1
shows an example of the TCD from dp.2 observed at Mat-
sushiro, Nagano on 20th of August, 1999. The vertical axis
of the graph represents potential (mV/m) and the horizontal
axis represents time (x10sec).

2.2. Train Noise

Train noise is generated regularly and the shape of the noise
is always similar. So we can find train noise from TCD
using the timetable of Matsushiro station, which is near the
TCD observation point.

We can specify the train noise in TCD of Matsushiro
shown in Fig.1 and the timetable of Tab.11 . We explain the
specifying method as follows by an example of the first 6:31
train. 0 sec on horizontal axis means 0:00, and 23,460 sec
represents 6:31. We can find a distinctive wave pattern be-
tween 22,200 and 24,400 sec in Fig.2 which is enlarged in
Fig.1 between 21,000 and 25,000 sec. The wave pattern
represents the train noise of the first 6:31 train.

1up-train = train which is bound to Tokyo, down-train = train which is
bound from Tokyo
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Fig. 2. Train noise (dp2 on 20th of August, 1999)

2.3. Seismic Electric Signals (SESs)

It is known from laboratory experiments that electric current
is generated before rocks fracture under load [8][9]. Earth-
quakes are also a kind of rock fracture phenomenon, so it
is known that electric currents flow within the Earth before
great earthquakes. We call such irregular changes of elec-
tric currents Seismic Electric Signals. Fig.3 shows an SES
as observed at dp.2 at approximately 1:30 on the 17th of
January, 1999 in Matsushiro. In this datum, VAN method
experts could find the SES because it was observed at mid-
night, when no trains were running.

It is known empirically that the features of SESs are 1)
the wave pattern has a positive amplitude, 2) the function
consists of a rapid increase followed by a gradual decrease,
3) the duration of an SES is from about 10 sec to a few
minutes or rarely up to a few hours.

An example of short-term earthquake prediction by the
VAN method is the great earthquake at Pirgos city in Greece
on March 1993. Before the earthquake, SESs were observed
in the TCD. As a result of acting on the earthquake predic-
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tion, although half of buildings in the city were completely
or partially destroyed, there were no casualties [10]. There-
fore the VAN method is available for short-term earthquake
prediction.
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Fig. 3. Seismic electric signal (dp.2 on 17th of January,
1999)

2.4. Problems with using the VAN method in Japan

In Japan, the most serious problem for short-term earth-
quake prediction using the VAN method is the presence of
train noise in TCD. Even if an SES is contained in the TCD,
the SES is often hidden by train noise. Fig.4 shows train
noise added to an SES artificially. It is difficult to classify
data which contains both train noise and SESs (like Fig.4) in
real TCD. On the other hand, since TCD is a direct current,
we assume that the data containing SES and train noise will
be equivalent to the linear addition of the train noise and
the SES. For example, Fig.4 was generated by adding the
train noise from 17th January 1999 and adding an SES in
the range of point 50 to point 200 (Fig.5). The vertical axis
of the frame shows potential (mV/m) and horizontal axis
shows frame length (sampling point). A frame length rep-
resents the number of points whose sampling rate is 10 sec.

We cannot easily distinguish the SES in Fig.4. There-
fore, even when TCD contains not only train noise but also
actual SESs, it is quite difficult to find the SESs by hand.

We want to detect SESs by applying several engineering
methods to TCD instead of using VAN method experts.

Since, train noise and SESs are generated by different
sources, we assumed they are independent. TCD can be
considered as the overlap of the electric potential of these
signal sources. Assuming linear overlap, we can apply the
standard ICA algorithm to the TCD. In this paper, we in-
vestigate the separation of train noise and SESs by applying
ICA to TCD for Matsushiro, Nagano.

3. APPLICATION OF ICA TO TCD

In this chapter, we propose 3 categories of TCD data as fol-
lows :
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Fig. 4. Train noise added to an SES
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Fig. 5. an SES in the range of point 50 to point 200

1. the data contained train noise but no SESs.

2. the data contained an SES but no train noises.

3. the data contained both train noise and an SES.

These data are given to ICA as input, and we evaluate the
separated output. The experimental purpose of pattern 1
and 2 is to examine whether only train noise or SES can be
detected as an independent source signal. The pattern 3 is
to examine whether the mixed train noise and SESs can be
separated.

In this study, we apply ICA as follows.
When ξ(t) indicates input data, A denotes a mixed ma-

trix, and s(t) denotes a source signal, the observed data can
be assumed to be :

ξ(t) = As(t).

We can observe only ξ(t), and ICA decomposes the ob-
served signal into the independent signal y(t). It can be
described formally as follows:

y(t) = Wξ(t).

The ICA algorithm estimates the independent signal y(t),
and the matrix W simultaneously by enlarging the indepen-
dencies of each component in y(t).

xi(t) is the observation data of the i-th dp.. We pre-
processed x(t) to obtain the ICA input ξ(t) as follows. Ap-
plying Principle Component Analysis (PCA) to the TCD
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from dp.1–8 for each of the 3 categories (x1(t), x2(t), ..., x8(t)),
we can represent the 8 dimensions of the vector (correspond-
ing to each dipole) with only three dimensions. The contri-
bution ratio using three principal components is 99.9%. So
we set the number of input dimensions to three. We use the
x(t) = (x2(t), x6(t), x7(t))

T because the dipoles are not
parallel.

x̂(t) = (x̂2(t), x̂6(t), x̂7(t))
T indicates the average nor-

malized data. We denote the average of x(t) to be x̄ =
(x̄2, x̄6, x̄7)

T . So x̄ can be described by x̂(t) = x(t) − x̄.
Λ denotes the diagonal matrix of eigenvalues of the co-

variance matrix of x̂, and matrix V is (v1, v2, v3) which
is the eigenvector for each eigenvalue. Then, R can be de-
scribed as:

R =
√

Λ
−1

V T .

We define the input as sphered data ξ(t) = (ξ1(t), ξ2(t), ξ3(t))
as following :

ξ(t) = Rx̂(t).

The sampling time length of ξi(t)(i = 1, 2, 3) should be
chosen carefully because SESs are not long-term signals.
If the sample is too long for a short-term signal like SES,
the signal may not be able to be separated well by ICA. So
we should choose the sampling time length so that an SES
could be assumed not to be a short-term signal. Since the
length of the SES which is used in this experiments is about
25 minutes, the length of ξi(t) is 100 minutes in section 3.1
and 3.2, 50 minutes in section 3.3.

We adopted the sigmoid function as the non-linear func-
tion in ICA algorithm, and Kullback-Leibler divergence as
the criterion for independence.

3.1. Data with train noise

In this section, the data with train noise but no SESs are
applied to ICA. xi(t)(i = 2, 6, 7) is the TCD from about
6:00am to 7:00am on 20th of August 1999. Fig.6 shows the
data of x2(t).
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Fig. 6. x2(t)

The size of the output data is equal to the size of the in-
put data in ICA of the experiments, so the three graphs in
Fig.7 are obtained. The output data y(t) = (y1(t), y2(t), y3(t))

T

denote independent signals.
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Fig. 7. Independent source signals

Since the vertical axis of yi(t)(i = 1, 2, 3) cannot be
determined, it is hard to evaluate the experimental result as
it is. So each yi(t) is transformed back to the original signal
space, and then we evaluate how each signal affects x(t).
To transform y1(t) to the original signal space, the value of
y1(t) is kept and the value of other signals is set to 0. The
data is described as y∗(t).

y∗(t) = (y1(t), 0, 0)T

x∗(t) = R−1W−1y∗(t) + x̄

Thus the y1(t) component contained in x∗(t) represents
x∗(t) = (x∗

2(t), x
∗

6(t), x
∗

7(t)). Fig.8 shows each x∗

2(t) to
which y2(t), y3(t) are transformed back to the original space
similarly.

In Fig.8, it presumed that the signal y1(t) corresponds to
train noise and the other signals appear to contain no train
noise. Therefore it turned out that train noise can be sepa-
rated from the TCD using ICA.
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Fig. 8. Estimated independent source signals in x∗

2(t)

3.2. Data containing an SES

We use the TCD from 17th January 1999 as the observed
data xi(t)(i = 2, 6, 7), which contains an SES but no train
noise. Fig.9 shows x2(t) where an SES can clearly be ob-
served in the data.

Fig.10 shows the presumptive independent source sig-
nals in x∗

2(t) to which each signal in y(t) is transformed
to the original space like in section 3.1. Seeing Fig.10, it
is clear that the signal y3(t) corresponds to the SES and
the other signals correspond to other noise besides the SES.
Therefore, we have successfully determined that an SES can
be separated from the data.

3.3. Data containing both train noise and an SES

In section 3.1, we evaluated only train noise data, and in
section 3.2, we also evaluated only SES data. Each signal
can be separated successfully. We use the data contained
both train noise and an SES as input data. However, it is
difficult to find the signals in real TCD as explained in sec-
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Fig. 9. x2(t)

tion 2.4. We generated artificial data for dp.2, 6, 7 in the
same manner proposed in section 2.4.

Fig.11 shows the estimated independent signals in x∗

2(t).
Comparing Fig.11 and Fig.5 which is an SES in x2(t), it
is confirmed that the range shown by the arrow in y3(t) is
identical to the range the SES is added in Fig.5. Hence,
it is supposed that the signal y3(t) corresponds to the SES
and the signal y1(t) corresponds to train noise. Therefore it
turned out that while the experimental data is generated ar-
tificially, train noise and an SES are separated from the data
contained both train noise and an SES by ICA.

4. CONCLUSION

The goal of our research is automatic short-term earthquake
prediction by separating train noises and seismic electric
signals from telluric current data using independent com-
ponent analysis. In this paper, we applied ICA to several
TCD collected at Matsushiro, Nagano. As a result, it turned
out that train noise or an SES can be separated in a single
channel. Moreover, it turned out that train noise and an SES
are separated from the data contained both train noise and
an SES, when the data was generated artificially. Therefore
SESs which have not been recognized yet may be detected
in old TCD using this analysis.

However, we have not confirmed that the output data of
the experiments are really an independent source signal be-
cause of lack of experimental data. We intend to investigate
into the independence of the signals using more output data
in the future.

The input data used in the experiments covered only a
short time span because SESs are not very long. On the
basis of these experiments, we will propose an algorithm
for non-stationary data.

Inherent dipole noise in TCD from each station are often
observed, so we are going to examine methods for removing
inherent dipole noise by pre-processing using ICA.
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Fig. 10. Estimated independent source signals in x∗

2(t)
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