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ABSTRACT

We propose an approach to source adaptivity in ICA based
on quantizing density estimators (QDE). These estimators
allow to realize source adaptivity in an efficient and non-
parametric way and we show how their application can be
viewed as a natural extension to recent approaches based on
parametric models. In simulations we show that ICA based
on QDE can considerably increase the performance of blind
source separation as compared with flexible parametric ap-
proaches.

1. INTRODUCTION

As shown by many authors [1, 2, 3, 4, 5, 6], independent
component analysis (ICA) can be conveniently stated as a
maximum likelihood (ML) estimation problem, which re-
quires to recover a linear transformation of an observable
random vector with the resulting components being statisti-
cally as independent as possible. In principle, to find the ML
solution the original source distributions have to be known.
Because in most real world situations this knowledge does
not exist the model building process often involves some de-
gree of arbitrariness. However, as indicated in [7], ICA can
be realized without knowing the source distributions, since
these distributions may be learnt from the data, together
with the linear transformation. In that way, asymptotically®
one may obtain the same performance in blind source sepa-
ration (BSS), as if the distributions were known.

Recently a non-parametric approach to source adaptiv-
ity has been proposed [8] which utilizes the kernel density
estimator (KDE), one of the most common methods for non-
parametric density estimation [9, 10]. However some diffi-
culties arise as one utilizes the KDE for source adaptivity in
ICA and we shall indicate two problems in the following.

One problem arises if one tries to normalize the compo-
nent distributions to unit variance. The assumption of unit
variance sources is quite common in latent variable mod-
elling and in particular in ICA, since it reflects the fact that
the components can only be recovered up to an inherent
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scale indeterminacy. In ICA a suitable component normal-
ization allows to realize learning via an unconstrained op-
timization of the separating matrix which gives rise to the
common gradient descent schemes. Thus in the following
we consider a component as a zero-mean random variable

y with unit variance. Based on a sample {y1,...,yn} We
have the kernel density estimator
1 N
fly) = N > K(y, i) 1)
i=1

which for normalized symmetric kernel functions K (y, -)
implies the following variance of the associated component
distribution

/ y2f(y)dy=/ y*K(y,0 dy+—Zyz

While the first (integral) term equals the variance of a zero-
mean random variable distributed according to the kernel
(density) function the second term equals the sample vari-
ance, which is an estimator of the component variance. Thus
for a fixed non-zero kernel bandwidth we will have a sys-
tematic mismatch between the predicted variance as implied
by the KDE and the direct estimator of the component vari-
ance. If we normalize the sample to have unit variance,
then this deviation will asymptotically vanish since the ker-
nel bandwidth is required to converge to zero for N — co.
Note that the component normalization to a fixed sample
variance is in no way optional but necessary, because other-
wise within a maximum likelihood setting an unconstrained
ICA learning scheme utilizing the KDE will increase that
variance? without bounds to maximize the likelihood of the
model. With an appropriate rescaling of the components
during optimization, in the asymptotic limit we will have a
unit variance component, but for finite samples which al-
ways require non-zero bandwidths the inherent bias as in-
troduced by the KDE may be large. Fortunately, this type
of bias is not a necessary shortcoming of non-parametric

2hy increasing the norm of the separating matrix



estimation and in the next section we will suggest an al-
ternative approach based on quantizing density estimators
(QDE) [11].

Another problem with the KDE is the high computa-
tional cost for evaluation of the associated density function.
With an N-point sample, ICA batch learning requires the
(repeated) evaluation of the KDE at N distinct locations
which results in a total complexity O(NN?2). For blind source
separation, ICA is typically applied to large data sets and
in these cases the computational complexity of the KDE
would be prohibitive. With a technique originally suggested
in [12], the authors of [8] therefore proposed an approxima-
tion of the KDE by means of a smoothed histogram. Us-
ing the Fast Fourier Transform (FFT) the complexity of V-
point evaluation could be reduced to roughly O(N log N).
In contrast to the KDE the computational cost for evaluation
of the QDE does not directly depend on the data set size and
in general the required complexity for N-point evaluation is
far below quadratic. In the following section we shall now
go into detail and the general form of the QDE will be intro-
duced together with a specialization well-suited to address
the source adaptivity issues in ICA.

2. QUANTIZING DENSITY ESTIMATORS

Quantizing density estimators (QDE) have recently been
proposed as a general method for unsupervised learning [11],
which can realize complexity-reduced representations of the
data in a non-parametric way. Traditional techniques for di-
mensionality reduction and clustering, like PCA or vector
quantization are well-suited for implementation with QDE.
An important feature of the QDE is, that by the specification
of a suitable quantizer one may include domain knowledge
or algorithmic constraints without resorting to the strong
distributional assumptions of the Bayesian framework.

In the following we will explain how the QDE may be
derived from a generalization of the traditional KDE. Con-
sider the situation where the KDE of (1) is constructed on
the basis of a quantized sample. We then have the following
estimator in 1D space

N

> K(y,q(yi; 9)) ©)

where ¢ : R — P C R is a given quantization or projection
function which maps a point to a parametrized subset of the
sample space according to

a(y; 8) = p(sp(y); 6)
with the projection index

= inly — p(z; 6)|.
sp(y) arggggly p(z; 6)]
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The projection index associates a data point with its nearest
neighbour in the projection set

P={y:y=p(z0),z¢€Z,6c0} “)

where Z C R is the set of all possible projection indices.
For an intuitive motivation of the QDE, one may ask from
a data compression perspective whether it is necessary to
store all the sample data {y1,...,y~} for the realization
of the kernel density estimator or if it is possible to first
reduce the data by some suitable quantization method and
then construct the estimator from the more parsimonious
complexity-reduced data set without decreasing its perfor-
mance.

In one dimension a natural projection set can be speci-
fied by a set of M quantization levels on the real line, i.e.
P = {wi,...,wp}. Inorder to minimize the Kullback-
Leibler divergence between the model and the true distribu-
tion we can now perform maximum likelihood estimation
of the level coordinates. In that way we obtain a maximum
likelihood estimator which takes the form of a constrained
mixture density

M
Fw) = 5 S ik (5 0) ©
i=1
with n; = |[{j : ¢ = argminy |y; — W|}| counting the
number of data points which are quantized to level 1.

From a different starting point the authors of [13] de-
rived the same functional form of a non-parametric ML den-
sity estimator which they proposed as a variation of the
KDE. In contrast to the KDE with fixed kernels centered
on N data points the locations of the kernels were consid-
ered as parameters. As with the traditional KDE, for con-
sistency of the estimator the bandwidth has to be decreased
as the sample size increases. The authors in [13] reported
that for a fixed non-zero kernel bandwidth ML-estimation
of the NV kernel centers always resulted in a smaller number
of actually distinct centers, i.e. several kernels coincided to
maximize the likelihood. Therefore the resulting estimator
had the form of (5) where M corresponds to the number of
distinct centers with n; counting the number of kernels coin-
ciding at w;. The optimum number of effective quantization
levels for a given bandwidth therefore arises as an automatic
byproduct of the ML estimation of an NV-point projection set
P = {w1,...,wn}. Vice versa, as also shown in [13], for
a fixed number of M < N kernels the bandwidth may be
estimated from the sample. In this case M has to be care-
fully increased with the sample size in order to guarantee
consistency.

Within the ICA setting in essence we require some one-
dimensional QDE which can be calculated in an efficient
way. Therefore the above QDE (5) would not be the best
choice since it introduces a considerable amount of com-
putational cost, due to the high variability of the M-level



quantizer. For ML estimation of the parameters one has to
alternate the projection of the data points to the M level
positions (/N nearest neighbour calculations) and the rees-
timation of these locations (e.g. via EM-algorithm). This
iterative procedure has to be repeated each time when the
separating matrix W has changed to some degree during
the overall ICA learning scheme. To avoid bad local min-
ima of the loss function it is recommendable to start the op-
timization with a small number of quantization levels and
gradually increase the complexity of the quantizer. Such a
model refinement requires additional effort and the overall
computional cost become burdensome at least for large data
sets. In the following we shall propose a suitable restriction
on the above quantizer which leads to a simplified learning
scheme with considerably reduced computing cost.

2.1. Regular Grids

A suitable simplification of the above QDE can be achieved
by restricting the kernel centers to the nodes of a regular
grid. For that purpose the projection set can be parametrized
according to

p(z;0) =XAz—-¢), z€4{0,1,...,. M -1}  (6)

where ¢ = (M — 1)/2 makes the grid symmetric w.r.t. the
origin. Thus (6) yields an M -level quantizer which takes the
form of a regular grid with distance A between neighbouring
nodes. The great simplification as compared with the previ-
ous quantizer is that now for a given number of quantization
levels, the scale A is the only parameter of the quantizer
which needs to be estimated. In addition, projection onto
that grid is trivial since it only requires an affine mapping
and a simple rounding operation. For large M the FFT can
be employed similar to [12] to further reduce the computa-
tional cost of QDE evaluation. With the above parametriza-
tion of the projection set the QDE takes the form of (5) with
the kernel centers w; replaced by A\(i — 1 — ¢).

Note, that with the above choice of a regular grid, sym-
metric distributions are favored, which reflects our expecta-
tion about most natural signal distributions. However even
for distributions with high skewness the estimator will con-
verge (at a slower rate) to the true density®. In that way
also other “priors”, which may for instance favor distribu-
tions with high kurtosis, may be implemented by a specific
parametrization of the grid. For consistency the number of
quantization levels is required to grow with the sample size
such that the QDE converges to a mixture of delta functions.

Sunder some mild restrictions which are common in non-parametric
density estimation (see e.g. [10])
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3. LEARNING SCHEME

Within a zero-noise ML setting we seek a non-singular trans-
formation y = Wx of the observable random vector x with
quadratic separating matrix W. This gives rise to the fol-
lowing contrast or loss function

N d
L(W,0) = —nlog| det W| — Z Zlogfj(yij) @)

i=1 j=1

which is the negative log-likelihood of the model. Thereby
fi(yi;) denotes the j-th component density evaluated for
dimension j of transformed data vector ¢. For an iterative
minimization of (7) one may now alternate between opti-
mizing W and @ which contains the free density parame-
ters. Minimization w.rt. 'W can be achieved by gradient
descent in terms of the natural [14] or relative [15] gradient,
which both yield the following update rule for batch learn-

ing:

W :=W —n(E[¢(y)y”] - )W ®)

with the expectation E[-] estimated by the corresponding
sample average. The vector of score functions ¢(y) has
components according to

_fily)
fi(y)

Optimization of the QDE parameters is achieved by ML-
estimation of the scale factors

_Olog fi(y) _
Jy N

¢i(y) = 9

N

Aj = argmax Z; log f;(yij; ). (10)

For a simple 1D search we restrict A to a set of discrete
values from a suitable interval. For each element from this
set one has to perform a projection step which maps the y;;
to their nearest neighbours on the regular quantization grid.
Then for each dimension we construct a QDE of the form

M
) =5 Y mK@AG-1-0) QD)
i=1

and calculate the associated log-likelihood. Thereby the n;
count the number of points which have been quantized to
A(i — 1 — ¢) and the kernel bandwidth is chosen to satisfy
the unit variance constraint on the component distributions
(see (13) for an example). In the following we will con-
sider suitable kernel functions and propose an optimization
heuristic for finding the global minimum of the loss func-
tion.



3.1. Choiceof Kernels

We will now argue that at least for small data sets the ICA
performance crucially depends on the type of kernel used
for construction of QDE. For blind source separation it is
important to find the global minimum of the in general highly
non-convex loss function (7). For that purpose a well-known
optimization heuristic is to start with a model of low com-
plexity, which yields a more simple loss function which
is at best convex or at least has a smaller number of lo-
cal minima. The probability of reaching the global mini-
mum is therefore higher than with more complex models
and the idea is now to track an initial minimum over a se-
quence of model refinement steps which gradually deform
the loss function. The practical results of such an opti-
mization scheme are usually convincing (see [16] for an
overview) and in the case of ICA with high source adap-
tivity we argue that such an approach may also greatly sim-
plify the search for an appropriate optimum. With the above
QDE it is therefore recommendable to start with single level
quantizers which imply densities with a single kernel func-
tion and then to add further quantization levels as optimiza-
tion proceeds. From this perspective it is clear that the suc-
cess of an iterative model refinement method must depend
on the choice of the kernel functions. With a Gaussian ker-
nel the initial source densities would also be Gaussian and
the global minimum of (7) can be found by decorrelation
of the data variables. However, this optimum is usually far
from an acceptable BSS solution and often a large amount
of quantization levels is needed to find the desired solution.
For that reason we do not use Gaussian kernels and in-
stead we propose to choose a suitable kernel from a set of
candidate functions during a first (M = 1) optimization
stage. Suitable candidate functions can be derived from
the family of generalized Gaussian density functions, with
Gaussian and Laplacian densities being special cases:

]
where T'(-) is the Gamma function. Thereby the kernel
width is specified by ~ while the shape is determined by a.
For a = 2 we have a Gaussian density, for a = 1 we get the
Laplacian density with positive kurtosis and for a > 2 the
density becomes “flattened” with negative kurtosis. There-
fore during the initial optimization stage with 1-level quan-
tizers we estimate the kurtosis and switch to o = 1 for posi-
tive and to a = 4 for negative values. This scheme has been
proposed as “flexible ICA” in [4] where the authors added
a third @ = 0.8 function to model sources with high kurto-
sis. This extension is not necessary with our QDE approach
since higher kurtosis can be captured at later optimization
stages with more quantization levels. Therefore after the

first optimization stage the kernel shape is not changed any-
more because the overall shape of the source density can

—z

_ a Y
= 2hT(1/a) P [_ ‘T (12)

K(y,z)
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now be adapted by the QDE based combination of kernel
functions.

As already mentioned above, the QDE has to be repeat-
edly normalized to have unit variance. With the generalized
Gaussian kernel for a certain value of the scale factor A this
is achieved by adjusting the bandwidth A to satisfy

2 M
hzigiﬁzg N Aﬁ ;“J‘(j —1-0?=1 (13

It is easy to see that this constraint also implies an upper
bound on the scale factor .

4. EXPERIMENTS

To investigate the performance of the QDE based ICA al-
gorithm as applied to blind source separation we generated
four linear mixtures from four different sources, with asso-
ciated density functions shown in figure 1. The sources ex-
hibit several distributional characteristics, like kurtosis (pos-
itive: Laplacian, exponential; negative: uniform, mixture
of two Gaussians), skewness (exponential) and bi-modality
(mixture of two Gaussians). All densities correspond to
unit-variance distributions. For better reproducibility we
used the mixing matrix given in [4] to transform a 1000-
point data set sampled from these sources. The above learn-
ing scheme was applied as follows: The initial separating
matrix was set to a diagonal matrix with inverse (estimated)
standard deviations of the corresponding data dimensions
as entries. In the first optimization stage we started with
one-level QDE with “switching” kernel shapes which corre-
sponds to the flexible ICA algorithm in [4]. This stage was
run for 200 iterations applying the gradient update rule (8)
with learning rate n = 0.05. A kurtosis-dependent switch-
ing of the kernel shape was enabled after each 10-th itera-
tion. The first stage was repeated for five times with slight
random variations of the initial separating matrix and the
matrix associated with the lowest value of the loss function
(7) was used at the start of the following optimization stage.
At the end of the first stage the kernel shape for each compo-
nent was “freezed”. The number M of quantization levels
was doubled and the scale was selected from 20 candidate
values on a regular grid within the interval [0, 2] (with bor-
ders excluded). Starting with the smallest scale, increasing
values were considered as long as the normalization con-
straint (13) could be satisfied. The scale with maximum
log-likelihood was then selected for the subsequent opti-
mization stage. After each stage M was doubled and the
new scale was selected (as above) from the updated interval
[0, 2] with X being the old scale. In addition the new learn-
ing rate was set to max{0.5x%n, 0.0005} with n being the old
rate. Then the subsequent optimization stage was again run
for 200 iterations. After the 8-th stage with M = 128 the



optimization was aborted since convergence of the separat-
ing matrix was reached. The estimated component densities
as shown in figure 3 indicate that more information couldn’t
be drawn from the 1000-point data set since one clearly sees
that overfitting has already begun. For comparison also the
resulting QDE of the 5-th stage with M = 32 are shown in
figure 2 where the characteristics of the source distributions
are already captured fairly well.

To monitor the separation performance we used Amari’s
error criterion (see e.g. [4]) which is plotted in figure 4 for
every 10-th iteration. For comparison also the continuation
of the flexible ICA scheme of the first stage has been mon-
itored for the next 1400 iterations, with performance also
plotted in figure 4. From the plot we see, that the flexi-
ble ICA continuation does not lead to further reduction of
the error, whereas the QDE based continuation clearly im-
proves the separation.
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Fig. 1. Original source densities (from upper left to lower
right): Laplacian, uniform, mixture of Gaussians and expo-
nential density

5. CONCLUSION

We utilized quantizing density estimators (QDE) recently
proposed in [11] to realize source adaptivity in ICA. With its
non-parametric nature the approach offers a valuable alter-
native to methods which only can realize a limited amount
of adaptivity. However we have shown that the QDE can be
viewed as a natural extension of such parametric approaches
and in particular the flexible ICA method [4] (and similarly
the extended infomax algorithm [5]) correspond to special
realizations of QDE with lowest complexity. These low-
complexity variants are necessary for initial learning in or-
der to stabilize the overall optimization. Finally, the simu-
lation results indicate that already for data sets of moderate
size it is possible to use QDE in order to improve the perfor-
mance in blind source separation as compared with flexible
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Fig. 2. QDE with M = 32 quantization levels, ordered to
match the original sources in figure 1
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Fig. 3. QDE with M = 128 quantization levels

ICA.
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