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ABSTRACT

We consider the problem of decomposing an observed input
matrix (or vector sequence)

�
into the product of a mixing

matrix � with a component matrix � , i.e.
��� ��� ,

where (a) the elements of the mixing matrix and the compo-
nent matrix are non-negative, and (b) the underlying com-
ponents are considered to be observations from an indepen-
dent source. This is therefore a problem of non-negative
independent component analysis. Under certain reasonable
conditions, it appears to be sufficient simply to ensure that
the output matrix has diagonal covariance (in addition to
the non-negativity constraints) to find the independent ba-
sis. Neither higher-order statistics nor temporal correlations
are required. The solution is implemented as a neural net-
work with error-correcting forward/backward weights and
linear anti-Hebbian lateral inhibition, and is demonstrated
on small artificial data sets including a linear version of the
Bars problem.

1. INTRODUCTION

In many real-world applications, we would like to find a set
of underlying causes (components, factors) which combine
to produce data that we observe.

A particular problem of interest to us is that of musical
signal analysis, and in particular automatic music transcrip-
tion. Here, the sound that we hear is composed of a number
of notes and/or instruments being played at the same time,
and we would like to decompose this into the note character-
istics, and when each note is being played. In previous work
we have approached this problem in the frequency spectrum
domain, using Saund’s [1] Multiple-Cause Model [2] and
sparse coding [3].

In its simplest form, this type of problem, in common
with many others, can be considered to be a non-negative
factor analysis problem. Each note has a positive (or zero)
volume, and the playing of a given note contributes (approx-
imately) a positive amount of power to a given frequency

band. 1

In this paper we investigate an approach to the construc-
tion of a multi-cause model with both non-negativity con-
straints, and a requirement for the underlying causes to be
independent: a type of non-negative independent compo-
nent analysis.

2. NON-NEGATIVITY CONSTRAINTS

Several authors have investigated the construction of linear
generative models with non-negative (or rectification) con-
straints.

Harpur [4] considered non-negative constraints for his
recurrent error correction (REC) network, and gave an in-
teresting illustration of this as an underdetermined prob-
lem. Charles and Fyfe [5] used a negative feedback network
(similar to Harpur network) with rectified outputs and/or
weights. They experimented with several types of rectifi-
cation constraint, finding that on the well-known bars prob-
lem, an exponential nonlinearity on the output performed
better than simple semilinear non-negative constraint or a
sigmoid, suggesting that this encourages a sparse represen-
tation [6].

Hoyer and Hyvärinen [7] explicitly combined a non-
negative constraint with a sparseness property, requiring the
sources to have probability densities highly peaked at zero
and with heavy tails. When provided with ‘complex-cell’
responses to natural images patches, their network learned
basis functions that coded for contours composed of several
aligned complex cells.

Lee and Seung [8, 9] discussed this as a problem of
conic coding or non-negative matrix factorization. They
applied this to handwritten digit recognition, showing that
an image is naturally decomposed into recognizable con-
stituent parts. Positivity constraints can also play a crucial
role in the operation of other networks, such as Spratling’s

1A well-known exception to this is anti-noise systems, which deliber-
ately cancel unwanted sound by addition of a matching sound 180 degrees
out of phase.
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pre-synaptic lateral inhibition network, which has also been
applied to the Bars problem [10].

3. PROBLEM STATEMENT

Suppose we are presented with an ����� data matrix
�

.
We often consider this to be a sequence of � input vectors���	��
����
�������
������

where each vector
�	�

contains � simulta-
neous observations.

We wish to decompose
�

as

� � ��� (1)

where the ����� matrix � � ������
����
�������
������ can be con-
sidered to be a sequence of � output vectors, and � is an����� generative weight matrix, that generates each input
vector

���
as ��� � � ��� (2)

from its corresponding output vector
���

, hence this is a gen-
erative model. If we are given less than � output compo-
nents, specifically if �! rank

� � �
, an exact solution may

not be possible, and we typically look for a solution that
minimises the mean squared error between

�
and its re-

construction ��� . Without any further constraints, this is
clearly an underdetermined problem, since any transforma-
tion �#" �%$ , �&"'$)(

�
� for some invertible matrix$ will also solve this problem.

We are interested in the case of non-negative outputs and
weights, i.e. *,+ -).0/ and 12- � .3/ . (Note that this implies
that all inputs 4�+ � must also be non-negative.) However,
even this non-negativity constraint may not be sufficient to
completely determine the solution [4].

Let us suppose that our vectors
�	�

were, in fact, a finite
number of samples observed from some random vector 5 �6 5 ��
������7
 598�:<; , such that

5 �>=@? (3)

where
? � 6 ? ��
������7
 ? 8A: ; is a random vector of sources and

the random variables
? - are independent from each other.

This is then the standard independent component analysis
(ICA) problem [11, 12] but with additional non-negativity
constraints on the weights and components.

4. INDEPENDENCE THROUGH ADAPTIVE
LATERAL INHIBITION

In this paper, we would like to investigate the use of a neural
network with lateral inhibition to perform this non-negative
ICA.

In a linear network, it is well known that adaptive lat-
eral inhibition can be used to decorrelate the outputs from a

network. For example, Barlow and Földiák [13] proposed a
network (fig. 1(a)) with output defined byB ��C B�D � ���FEHGI�J� D ���KEH�J� D � � �FEL�NMJOPG��Q�J� D �

(4)

with a symmetric lateral inhibition matrix
G

, leading to� � �NMJOPG�� (
� �

(5)

when the outputs have settled (considered to be over a short
timescale), and an anti-Hebbian learning ruleR G �TS�UWV

offdiag
���X� ; � (6)

which converges to a
G

such that the outputs are decorre-
lated, i.e. that Y ���X� ; � is diagonal.

�
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(a) Barlow and Földiák’s [13] decorrelating network.
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(b) Decorrelating subspace network

Fig. 1. Anti-Hebbian decorrelating networks.

These and other anti-Hebbian networks have been com-
bined with Hebbian feed-forward networks (fig. 1(b)) to dis-
cover uncorrelated, sparse, and/or information-efficient rep-
resentations of a subspace of the input [14, 15].

Now it is well known that (for a linear network with
zero-mean inputs at least) this linear anti-Hebbian network
will only find decorrelated rather than independent outputs
(see e.g. [12]). The early Jutten and Herault ICA (or ‘INCA’)
network [16] used this type of network with a nonlinear
anti-Hebbian learning algorithm to overcome this limitation
and perform true independent component analysis

If we find a combination of non-negative components
which have zero covariance, i.e. Y �lk�mk� ; � is diagonal, wherek� � ��Eon�

and
n�

is the mean of
�

, then this is a neces-
sary (but still not sufficient) condition for independence. In
the unconstrained linear case, we could rotate the basis vec-
tors within the same subspace, and we could still produce a
decorrelated output.
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However, together with non-negativity constraints, this
zero covariance condition appears to be is sufficient to fix
the remaining underdetermined parameters of the solution
(apart from the usual scaling and permutation) provided that
the sources have a non-zero likelihood of activation in the
region close to zero. Sparse sources, which have high like-
lihood of activation near zero, would be particularly helpful
here, although sources 1�+ with a pdf where � � /��%1�+I � � � / for some � is likely to leave some scope for ‘slack’ in
the rotation of the solution basis. Here we demonstrate this
with some simulations, although a rigorous proof remains
to be developed.

5. ALGORITHMS AND SIMULATION RESULTS

5.1. Initial iterative algorithm

Most of the algorithms we describe are based around a net-
work similar to Harpur’s Recurrent Error Correction net-
work [4] with non-negative weights and outputs, combined
with a covariance-removing (rather than decorrelating) anti-
Hebbian recurrent inhibition layer (fig. 1).

Consider first the non-negative output activations. We
have B �J� D � C B�D � � ; �FEL�NMJOPG��Q�J� D � (7)

with constraints

12- .]/ �������]� (8)

which could be solved directly by iterating eqn (7), but (as
pointed out by Lee and Seung [8]) there are polynomial time
solutions for this type of problem. Our particular method
was modified from the Matlab non-negative least squares
(NNSL) routine. (Note that our neural approach is not the
same as the NNLS solution for

�
to � ; � � �NMJOPG��Q� ).

We then update � and
G

according to

R � � S
	 ���FE����Q� ; (9)R G � S�U �7k�mk� ; � (10)

where
� � � � is a reconstruction for

�
, and

k� � �JE@n�
. We

used batch updating in our simulations, with random initial
values for � and

G
initilialized to the identity, and some

adjustments to update rate schedules to speed up learning.
The results on a small 2-D dataset show the operation of the
algorithm (figs. 2, 3).

5.2. Faster algorithms

While the iterative algorithm (9)–(10) is simple and direct,
there are modifications that can be made that directly at-
tempt to force the outputs to be decorrelated.

In fact, it turns out to be easier to specify that the out-
put should have a specific covariance matrix, e.g. �� �
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Fig. 2. Simulation of algorithm (9)–(10) on a 2-D artificial
data set generated as uniformly distributed amounts of posi-
tive basis vectors (dotted). The plots show the original gen-
erated data (‘o’), weight vectors � �2
 �  (‘x’ with solid line
from zero), and the reconstructed data points (‘+’). After
initial overall scaling (b), the outputs covariance is removed
(c), then the basis set rotated to include those data points on
the ‘outside’ of the hull formed by the weight vectors (d).

Y �7k�mk� ; � ��� M rather than just forcing the off-diagonal en-
tries to be zero.

Starting from �� we linearly remove the effect of the
current symmetrical inhibition matrix

G
to calculate an ef-

fective pre-inhibition covariance of

 eff��� � �NMJOPG�� �� �NMJOPG�� (11)

which we wish to be diagonalized (set to
� M

) by our new
inhibition matrix, i.e.

� M � �NMJOPG�� ��� � (
�
 eff��� �NMJOPG��

��� � (
�

(12)

giving G�� ��� � � � C � �7�  eff��� �
���  E M

(13)

where
�  eff��� � ���  is chosen to be real and symmetric. We ac-

tually only attempt to reduce eigenvalues of �� (compared

with those of  eff��� ) to
�

rather than increasing them, to
avoid

G
becoming singular in the process (see also [15] for

an iterative neural algorithm for this type of problem). Note
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Fig. 3. Learning curves corresponding to fig. 2 showing
reduction in sum-squared reconstruction error (upper curve)
and normalised covariance between the two outputs (lower
curve).

that there is some danger of overshoot with this method,
since the calculation relies on the output

�
only, rather than

the original data, so the new
G

may attempt to push data
points on the ‘edges’ beyond their original positions once
the new boundary points are calculated on the following it-
eration. In comparison with the simple iterative algorithm,
some speeding up can be observed (fig. 4).
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Fig. 4. Speed up in learning due to direct calculation of
G

in eqn (13), in comparison to fig. 3(e).

For this simple problem, additional speed-up is possible
by directly calculating a new weight matrix � . Follow-
ing the calculation of

G
in (13) and calculation of the new

output matrix � , we find a new weight matrix � that min-
imises the least mean square reconstruction error of

�
from

this � . Specifically we use the Matlab matrix left division

� � � � ;�� � ; � ; (14)

and then apply the positivity constraint to � .

For problems such as this with equal inputs and outputs,
it can help to set the initial weight matrix to the identity
matrix

M
, since then initially all data points are in the lin-

ear region. (This approach would not be a good idea for
problems that require symmetry breaking).

We found that this combination gives considerable speed-
up, with good values for reconstruction and covariance in
just a few iterations (fig. 5). However, the combination of
approximations appear to have a tendency to make this par-
ticular approach unstable on more difficult problems.
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(c) Learning curves

Fig. 5. Fast convergence of algorithm (13)–(14). Note that
the diagonal initial weight vectors permit perfect initial re-
construction, and only small reconstruction error is intro-
duced as a few data points fall outside of the representation
region between the weight vectors.
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5.3. Linear bars problem

We also illustrate the operation of this algorithm on a linear
version of the well-known Bars dataset introduced by [14].

For this problem, we show results with � ��� � � di-
mensional input image formed from linear addition of bars
(1 if present, 0 otherwise), with each of the 16 possible bars
(8 horizontal and 8 vertical) present with probability � . In
this illustration we used � � / � � with � � �l/�/ patterns,
with � initialized to uniform random numbers in the range6 / 
 �7: .

We found that the direct approach (13)–(14) was unsta-
ble on this problem, so used the iterative algorithm (9) for
� with the direct calculation (13) for

G
. The results are

shown in figs. 6, 7. This particular example is interesting
since it shows two potential bars being ‘forced apart’ by the
covariance reduction requirement. Although the final recon-
struction error and distance from target covariance are both
non zero, the bars have clearly been extracted.
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Fig. 6. Learning curves for linear bars. The ‘Covariance’
measure is the Frobenius norm �  � E � M � F measuring how
much �� is away from the target

� M
.

6. CONCLUSIONS

In this paper we considered the task of finding non-negative
independent components � together with non-negative lin-
ear weights

=
to give an observation matrix

� �T= � .
Provided that the non-negative sources have non-zero

pdf around zero, to identify this mixture it appears that it
is sufficient to identify non-negative weights � and non-
negative ‘outputs’ � such that the output covariance matrix
�� is diagonal, and that no higher-order statistics or tem-
poral correlations are required. This is likely to be the case
for sparse components, since they have a large probability
density around zero.

We developed a neural network approach based on this
concept, using a network with symmetrical forward and back-
ward weights with an error correction algorithm, but with
covariance reduced by a linear anti-Hebbian stage.

We demonstrated the operation of this network on small
artificial learning tasks, specifically a 2-D visualization prob-
lem, and a linear version of the well-known Bars problem.
These can be learned successfully using one of a number of
algorithm variants.

There are a number of remaining problems to be tack-
led. A rigorous proof that non-negativity and covariance re-
moval is sufficient, and under what conditions, is needed.
Some algorithm variants make assumptions that may not
hold for all problems, and so may not be stable in all cases.

In addition, the polynomial algorithm we are currently
using to find the final non-negative outputs does not scale
well as the output dimension � increases, since it operates
by adding potential non-negative outputs to a ‘positive’ set
one at a time. We are currently investigating alternative so-
lutions which will permit the application of this method to
larger, real-world problems, such as our music transcription
problem, with reasonable learning times.
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Fig. 7. Learning the linear bars problem. Note that the
decorrelation condition has forced two of the bars apart (po-
sitions (1,3) and (3,2)) between 150 and 100 iterations: a
corresponding reduction in the covariance measure can be
seen in fig. 6.
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