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ABSTRACT

In this paper, we discuss blind deconvolution of dynami-
cal systems, described by the state space model. First we
formulate blind deconvolution problem in the framework of
the state space model. The blind deconvolution is fulfilled
in two stages: internal representation and signal separation.
We employ two different learning strategies for training the
parameters in the two stages. A sparse representation ap-
proach is presented based on the independent decomposi-
tion. Some properties of the sparse representation approach
are discussed. The natural gradient algorithm is used to
train the external parameters in the stage of signal separa-
tion. The two-stage approach provides a new insight into
blind deconvolution in the state-space framework. Finally a
computer simulation is given to show the validity and effec-
tiveness of the state-space approach.

1. INTRODUCTION

Blind separation/deconvolution has attracted considerable
attention in various areas such as telecommunications, speech
recognition, image enhancement and biomedical signal pro-
cessing [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The blind separa-
tion/deconvolutionproblem is to recover independent sources
from sensor outputs without assuming any a priori knowl-
edge of the original signals besides certain statistic features.

Although there exist a number of models and methods
for separating blindly independent sources, there still exist
several challenges in generalizing mixtures to dynamic and
nonlinear systems, as well as in developing more rigorous
and efficient algorithms with general convergence. For ex-
ample, in most practical applications the mixtures not only
involve the instantaneous mixing but also delays or filtering
of primary sources. The seismic data, the cocktail problem
and biomedical data such as EEG signals are typical exam-
ples of such mixtures.

The state space model has been developed for blind source
separation and blind deconvolution by Salam et al [11, 12],

Zhang et al [13, 14], and Cichocki et al [15]-[16]. In the
state space formulation, the parameters of demixing model
are divided into two types [17]: the internal parameters and
external parameters. The internal parameters are indepen-
dent of the individual signal separation problem; they are
usually trained in an off-line manner, using a set of signal
separation problems. In contrast, the external parameters
are trained individually for each separation problem. Thus,
the internal and external parameters are trained in different
ways. The natural gradient algorithm [13],[17] was devel-
oped to train the output matrices by minimizing the mutual
information. The state space approach was also extended
to nonlinear system, and an effective two-stage learning al-
gorithm was presented [15, 17] for training the parameters
in demixing models. Furthermore, the Kalman filter was
employed to compensate for the model bias and reduce the
effect of noise [14, 18].

However, the training strategy for the internal parame-
ters still remains open. It is the main purpose of this paper to
develop a learning algorithm for training the internal param-
eters. The remainder of this paper is organized as follows:
We present the general formulation of the blind deconvolu-
tion in dynamical environment in section 2. The neural net-
work structure for internal representation is given in section
3. A new learning strategy, the independent decomposition,
is proposed and some properties of the learning strategy are
discussed in section 4. A computer simulation is given to
show the validity of the proposed method.

The state-space description of systems is a new gener-
alized model for blind separation and deconvolution. The
main advantage of the state space description for blind de-
convolution is that it gives the internal description of a sys-
tem, which enables us to realize the two-stage approach for
blind deconvolution. Recently, some biological experiments
indicate that primary visual cortex (area V1) uses a sparse
code to efficiently represent natural scenes [19],[20]. This
provides an evidence to support that the sparse representa-
tion is biologically plausible for training a neural network.
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Fig. 1. Illustration of the structure of state space model for blind deconvolution

2. GENERAL PROBLEM FORMULATION

Assume that unknown source signals ��� �����	��
�
�
�� ��
 ����� are
stationary zero-mean i.i.d processes and mutually statisti-
cally independent. Denote � ��������� ��� �����	��
�
�
�� ��
 ��������� .
Suppose that the unknown source signals � ����� are mixed by
a stable nonlinear dynamic system

� ����������� ��� � �����	� � �����	�  "!#�������	� (1)$ �����%� & � �����'� ( � �����'� )*�����	+ (2)

where
�

is an unknown nonlinear mapping, � �����#,.-0/ is
the state vector of the system, and $ �����1,.- 
 is the vector
of sensor signals, which are available to signal processing. "!#�����

and
)2�����

are the process noises and sensor noises
of the mixing system, respectively. The output equation is
assumed to be linear. In this paper, we present another dy-
namic system as a demixing model

� ���������%�3� / � � �����	� $ �����	�	4��� ! �������	� (3)5 �����6�7& � �����*�8( $ �����'��)*�����	� (4)

where $ �����9,:- 
 is the available vector of sensor signals,� �����;,<->= is the state vector of the system, 5 �����?,<- 

is designated to recover the source signals � ����� in certain
sense,

� / is a nonlinear mapping, described by a general
nonlinear capability neural network,

4
is the set of param-

eters ( synaptic weights ) of the neural network.
 ! �����

and)*�����
are the process noises and output noises of the demix-

ing system, respectively. The dimension @ of the state vec-
tor is the order of the demixing system. See figure 1 for
illustration of the structure in the demixing model.

Since the mixing system is completely unknown, we
neither know the nonlinear mappings

�
, nor the dimensionA

of the state vector � ����� . We need to estimate the order
and approximate nonlinear mappings of the demixing sys-
tem. In the blind deconvolution, the dimension @ is diffi-
cult to determine and is usually overestimated, i.e. @�B A .
The overestimation of the order @ may produce delays in

output signals, but this is acceptable in blind deconvolution.
If the mapping

� / in the state equation is linear, the non-
linear state space model will reduce to the linear generalized
multichannel blind deconvolution.

The unknown parameter
4

in equation (3) is referred to
as the internal parameter, and C &D(FE in equation (4) as the
external parameter, respectively. The learning strategy for
the internal and external parameter is different. We should
employ the blind deconvolution algorithm [14, 17] for the
external parameter C &�(FE . However, in this paper, the learn-
ing algorithm for internal parameter

4
will use a different

strategy: the sparse representation.

3. NEURAL NETWORK FOR INTERNAL
REPRESENTATION

In this section, we introduce the architecture of neural net-
work for the internal representation of the dynamical sys-
tem. The neural network in this paper is topologically simi-
lar to the multi-layer perceptron (MLP). The mechanism of
learning for the network in this paper is essentially differ-
ent from the one in MLP. The neural network is designed as
a hierarchical competitive-cooperative network, which con-
sists of

A
layers, say

A �HG
. In general, the forward con-

nections to a neuron in one layer are topologically linked
to related region of the preceding layer. For simplicity, we
impose extra constraints on the connections. Each neuron
receives connections from L neurons in the preceding layer,
where L is a given number. We choose L=12 in the simu-
lations. Figure 2 illustrates the general architecture of the
neural network used in this paper.

The input to the neural network is denoted by $ ����� , and
the neural state (the potential ) of I -th layer is denoted by�KJ ����� . The number of neurons at I -th layer is denoted by
@ J . Assume that L JM is the output of N"O th neuron at I'O th
layer , given by

L JM �����P�RQS�UT J M �������	+ (5)
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Fig. 2. The neural network architecture for internal repre-
sentation

In general, the potential
T J M �����

can be described by a recur-
rent neural network

T J M ���������%��� J M T J M �����'��� J M ��������� M �����
(6)

where
� J M

is a certain decay factor of � -th neuron at layer
I ,

� M
is the noise term and

� J M ���
	�� � =�
�� J M 	 L J�� �	
is the

input to the � -th neuron at I'O th layer.
� J M 	

is the connection
weight between the output of neuron j at

� I O ��� -th layer and
the input of neuron i at I -th layer. If I �H� �����	 ��� 	

, where$ � ��� � ��
�
�
���� 
 ��� is the input applied to the network. We
can also rewrite the neural network in a compact form

� J �����P����� � J ������� (7)

The state vector of I -th layer can be described by

� J ���������P��� J � J ������� $ J �����'��� J ����� (8)

where
� J ��� � �"! �#� J � ��
�
�
��$� J =�
 � and $�J ��� J�� J�� � .

The connection weight
� J � I � � ��
�
�
�� A are the pa-

rameters to be determined during training. The set of the
connection % � J � I � � ��
�
�
�� A'&

is denoted by
4

as in
equation (3). The learning strategy in this paper is essen-
tially different from the error backpropagation approach.
Our purpose is to train the neural network such that the in-
ternal states have maximally sparse representation. Thus
the source signals can be linearly expressed by the external
parameters.

4. INDEPENDENT DECOMPOSITION AND
SPARSE REPRESENTATION

In this section, we should present a sparse representation
approach for training the internal parameter. According to
recent findings [19], primary visual cortex (area V1) uses
a sparse code to efficiently represent natural scenes. An-
other finding is that retinal ganglion neurons act largely in-
dependently to encode information [20]. This provides an
evidence to support that the sparse representation is biolog-
ically plausible for training a neural network.

First, we present an independent decomposition method
of random variables, which is related to independent com-
ponent analysis. Different from the model for blind source
separation, we do not assume that the sensor signals, de-
noted by $ ����� are generated by a linear instantaneous model.
The purpose of independent decomposition is to train a lin-
ear transform

� J such that

$ J �����P��� J � J�� � ����� (9)

are maximally mutually independent. To this end, we can
employ ICA learning algorithms, such as the natural gradi-
ent algorithm [5] and equivariant algorithm [8], to train the
transform

� J . In this paper, we use the natural gradient
algorithm, which is described by
� J ��� �����P��� J ����� O)( ����� C *SO ��� $ J � � $ J � � E+� J + (10)

where
��� $�J �P� C Q � ��� J � �	��+�+�+�� Q-,;��� J , � E � is a vector of cer-

tain activation functions. The matrix
� J is not necessary to

be square. If it is rectangular, we should replace algorithm
(10) with the natural gradient approach for over- and under-
complete mixture [13] to train the matrix

� J . The activa-
tion functions, which are closely related to the distributions
of the output signals, are crucial to the independent decom-
position. Different choice may lead to a different transform
matrix

�
. In order to make the output signals as sparse as

possible, we should choose the activation functions derived
from certain sparse probability density functions. For ex-
ample, we can choose

QS����� �/. �1032 ����� , assuming the pdf
I ������� 45 6�735�8"6 , where 9 is the normalization factor. This
is a heaver-tailed distribution for the latent variable than the
Gaussian distribution. Other distribution models, such as
the Laplacian, can also be used here.

Now, we are going to show that the independent decom-
position will give a spatially sparse coding strategy. For
simplicity, We assume that the internal system is described
by a multi-layer perceptron, i.e. equilibrium state of equa-
tion (6). Supposed that

� J M �����
is the neuron potential of the� O th neuron in the network. The neuron fires if the value: � J M �����;:

exceeds a certain threshold, say < B>= . As we know,
the algorithm (10) will lead to each of the output signals
as a temporally sparse signal, which means that only a few: � J M �����;:

in time sequence will exceed the threshold < . On the
other hand, the independency between two different neurons� J M �����

and
� J	 �����

will prevent them from firing at the same
time. Thus, given time

�
, only a few neurons fire, according

to the above analysis. Therefore, we infer that the indepen-
dent decomposition will produce a sparse representation in
neural networks.

If the input stream is very complex, the neuron responses
in the first layer may not be mutually independent, even af-
ter sufficiently learning. Similarly, if we consider the neu-
ron responses in first layer as the input to the second layer,
we can develop a learning strategy to adjust the connections
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Fig. 3. a) The sensor signals $ ����� ; b) The output� ����� after independent decomposition

between the first and the second layers, by making the neu-
rons responses in the second layer maximally mutually in-
dependent. For the same reason, we can present learning
algorithms for train the connections between other layers.

It should noted that the independent decomposition is
closely related to the redundancy reduction [21]. The prin-
ciple of redundancy reduction states that a useful goal of
sensory coding is to transform the input in such a manner
that reduces the redundancy due to statistical dependencies
among elements of the input stream. The independent de-
composition provides a way to realize the redundancy re-
duction for signal representation. Figure 3 shows clearly
that there are plenty of redundancy in the input data (here
the input data are ten components of a video stream) and af-
ter independent decomposition, the output signals are tem-
porally sparse and maximally spatially independent.

4.1. Cooperative and Competitive Mechanism

The independent decomposition results in cooperation and
competition between the neurons in the same layer in the
following sense: If certain feature ( an independent compo-
nent ) is represented by a neuron, then the independent de-
composition algorithm will force other neurons not to rep-
resent the same feature, but other features ( other indepen-
dent components ). This implies a competitive mechanism
in learning. On the other hand, if certain feature is not rep-
resented in the neural network, the independent decompo-
sition rule will push some neuron to represent the feature.
This attributes to the cooperative mechanism in learning.

5. NATURAL LEARNING ALGORITHM

In this section, we employ the natural gradient algorithm to
update the external parameters

� � C &F� (FE , given the pa-

rameters
4

in the demixing model. In order to obtain an
improved learning performance, we define a new search di-
rection, which is related to the natural gradient, developed
by Amari [22]. The natural gradient search scheme is an ef-
ficient technique for solving iterative estimation problems.
For a cost function � � 5 ��� �

, the natural gradient
�� � � 5 ��� �

is the steepest ascent direction of the cost function � � 5 ��� �
.

The relation between the natural gradient and the ordinary
gradient can be defined by [17]�� � � � � � * � & � & & � (

(>�2& (>�*(�� + (11)

where
� � ���	��

� ��� ������ ��

� ��� �������� . Therefore, the natural gra-

dient algorithm can be written in the following form

C � & � (FE�� O�( ����� �� � � 5 ��� �	+
(12)

Explicitly, we obtain an learning algorithm to update matri-
ces
&

and
(

as� &0�����%� (�� � *SO�� � 5 � 5 � � & O�� � 5 � � � � � (13)� (������6� ( � *SO�� � 5 � 5 � � ( � (14)

where � � 5 � is the vector of activation functions. It is easy to

see that the preconditioning matrix

� * � & � & & � ((>�2& (>�'(!�
is symmetric positive definite, and this expression is the ex-
tension of Amari’s natural gradient to the state space model.

The algorithm includes an unknown score function
��� 5 � .

The optimal one is given by " M ��� M � � O J�#$ � % $ �J $ � % $ � , if we can es-
timate the true source probability distribution I M ��� M � adap-
tively. Another solution is to give a score function according
to the statistics of source signals. Typically if a source signal� M

is super-Gaussian, one can choose " M ��� M �F� . �1032 ��� M � .
Respectively, if it is sub-Gaussian, one can choose " M ��� M �P��'&M

.

6. STATE ESTIMATOR – THE KALMAN FILTER

The Kalman filter is a powerful approach for estimating the
state vector in state-space models. Therefore, it can be used
to compensate for the model bias and to reduce the effect of
noise. Consider the demixing model with noise terms,

� ���������P�<��� � �����	� $ �����	�	4��)(.������� (15)5 ����� � & � �����'�8( $ �����'��)*�����'� � ����� (16)

where the random variables
(.�����

and � ����� represent the
process and measurement noise. To estimate a state vector
of the nonlinear system, we begin with the variational equa-
tion *

� ���������,+ �.-0/ * � �����'���1/�(.�����	�
(17)
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where
-0/

is the Jacobian matrix of partial derivatives of�
with respect to � ,

-0/ � M 	 � ��� $����� � � �����	� $ �����	�	4 ���K�	� and�1/
is the Jacobian matrix of partial derivatives of

�
with

respect to
(

,
�1/ � M 	 � ��� $���	� � � �����	� $ �����	�	4����K�	+

Suppose that the random variables of
(

and � have the
following probability density functions

I ��
 �������
���H������� / �	� I � L �������
���H����� -0/ �	+
(18)

where
� /

and
-0/

are covariance matrices of
(

and � .
Given theses approximations, the Kalman filter equation used
to the state �� is

�� � � �����*��� /�� �����	�
(19)

where the matrix
� /

is called the Kalman gain.
� �����

is
called the innovation or residual which measures the error
between the measured(or expected) output 5 ����� and the pre-
dicted output

& � �����'�:( $ ����� . There are a variety of algo-
rithms with which to update the Kalman filter gain matrix�

as well as the state � ����� . Refer to [23] for more details.
However, in the blind deconvolution problem there ex-

ists no explicit residual
� �����

to estimate state vector � �����
because the expected output 5 ��.�� here means the source sig-
nals, and we cannot measure the source signals. In order to
solve the problem, we present a new concept called hidden
innovation in order to implement the Kalman filter in the
blind deconvolution case. Since updating matrices

&
and(

will produce an innovation in each learning step, we in-
troduce a hidden innovation as follows

� ����� � � 5 ����� � � & � �����'� � ( $ �����	� (20)

where � &D� &0���K�;��� O &0����� and � ( �R(����K�;��� O (������ .
The hidden innovation presents the adjusting direction of
the output of the demixing system and is used to generate
an a posteriori state estimate. Once we define the hidden
innovation, we can employ the commonly used Kalman fil-
ter to estimate the state vector � ����� , as well as to update
the Kalman gain matrix

�
. Refer to [23] for the detailed

updating algorithm.

7. COMPUTER SIMULATION

A number of computer simulations have been performed to
demonstrate the validity and effectiveness of the two-stage
approach for generalized blind deconvolution. Due to the
limited space, we only give an illustrative example. The
mixing model in this simulation is the � -channel nonlinear
neural network model, The source signals � are randomly
generated binary signals and � are the Gaussian noises with
zero mean and a covariance matrix = + � * . The demixing
model consists of two parts: the dynamical system and out-
put system. The dynamical system is described by neural
network (5) and (6) and the output system by equation (4).
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Fig. 4. First Row: Sensor signal constellations, Second
Row: Reconstructed signal constellations

The internal system is trained by the independent decompo-
sition approach, and the output system by the blind decon-
volution algorithm (13) and (14), respectively, where the
nonlinear activation function is chosen to be

� M ��� M �;� � &M
for any � . Figure 4 plots the sensor signal constellations and
output constellations of the demixing model. From this sim-
ulation, we see that the two-stage approach can recover the
binary sources from the dynamic nonlinear mixture.

8. CONCLUSION

In this paper, we have presented a two-stage approach to
blind deconvolution of dynamical system, described by the
state space model. The state space formulation allows us to
separate blind deconvolution in two steps: internal informa-
tion representation and unsupervised learning for external
parameters. In this paper, we use the independent decom-
position method for the internal information representation,
which give a sparse representation of the neural network.
The independent decomposition also provides a way to re-
alize cooperative and competitive learning. An illustrative
simulation is given to demonstrate the validity and effec-
tiveness of the state-space approach.
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