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Abstract: Blind source separation (BSS) is a method for 

recovering a set of source signals from the observation of 
their mixtures without any prior knowledge about the 
mixing process.  In BSS the definition of a source signal 
has an inherent indeterminacy; any linear transform of a 
source signal can also be considered a source signal.  Due 
to this indeterminacy, there are an infinite number of valid 
separators that can extract the source signals.  This paper 
proposes a principle for choosing an optimal separator 
among them in a certain sense.  The optimal choice is 
made such that the observed signals are the least subjected 
to distortion by the separator.  The proposed 
normalization has some favorable features, particularly for 
BSS of convolutive mixture. 

I.  Introduction 

Blind source separation (BSS) is a method for recovering a 
set of source signals from the observation of their mixtures 
without any prior knowledge about the mixing process.  It 
has been receiving a great deal of attention from various 
fields as a new signal processing technique.  In view of 
the level of complexity, the mixing process can be 
classified into two types: instantaneous mixture and 
convolutive mixture.  In this paper we deal with 
convolutive mixture in general. 

Inherently BSS has two kinds of indeterminacy.  
One is the indeterminacy in the numbering of the sources 
and the other is that in the scaling or normalization.  The 
latter indeterminacy is more essential and will be addressed 
in this paper.  The indeterminacy has usually been 
considered unsubstantial, but it cannot be overlooked in 
view of actual implementations and applications of BSS.  
This paper addresses a basic question of what kind of 
normalization of the separator is optimal.  An answer will 
be given based on the Minimal Distortion Principle.  
Below we describe what the principle is, why it is 
important, and how it can be implemented. 

II.  Mathematical Nomenclature 

Here we summarize several notations appearing in the 

following sections.  Matrix ijx� �= � �X  and transfer 

function matrix ( ) k
k

k
z z

∞
−

=−∞

= �X X  below are always 

square matrices, and the coefficients kX  of ( )zX  are 

all real-valued. 

•  Frequency transfer function 2( )jfe πX  associated with 

( )zX  is denoted by ( )fX� .  If ( )fX�  is 

nonsingular for every f, then ( )zX  is said to be 

nonsingular. 
•  The conjugate of the transpose of matrix X is denoted 

as †X .  The same notation is also used for transfer 

function matrix ( )zX  as † 1( ) ( )Tz z−X X� . 

•  x  represents the Euclidean norm of vector x.  tr X  

stands for the trace of matrix X. 
•  The Frobenius norm of matrix X  is defined as 

( )
1/ 2

1/ 2 2†

,

tr | |ij
i j

x
� �

= � �
� �
�X XX� . Also the norm of 

transfer function matrix ( )zX  is defined as ( )zX  

1/ 2
2

k
k

∞

=−∞

� �
� �
� �
� X� or equivalently ( )zX  

( )1/ 21/ 2 2

1/ 2
( )f df

−� X�� . 

• { }1diag ,..., Nd d  or { }diag id  represents the 

diagonal matrix which has diagonal entries 1 ,..., Nd d .  

diag X  (off-diag )X sets every nondiagonal (diagonal) 
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entry of matrix X to be zero. 

• ( ) 1 ( 0), 0 ( 0)δ τ τ τ= ≠� . 

III. The Mixing Process and 

the Demixing Process 
Let us consider a situation where statistically independent 

random signals si(t) (i = 1,…, N) are generated by N 

sources and their mixtures are observed by N sensors.  It 
is assumed that every source signal si(t) is a stationary 
random process with zero mean, and the sensors’ outputs 

xi(t) (i = 1,…, N) are given by a linear mixing process: 

0
( ) ( ) ( ) ( )t t z tτ

τ
τ

∞

=
= − =�x A s A s , (1) 

where s(t) � [s1(t), …, sN(t)]T, x(t) � [x1(t), …, xN(t)]T, and 

0
( )z z τ

τ
τ

∞
−

=
�A A� .  It is known that, in order to realize 

BSS, at most one source signal is allowed to be Gaussian. 
For the mixing process we assume two conditions: 

0
τ

τ

∞

=
< ∞� A  and nonsingularity of ( )zA .  The first 

condition states that the mixing process is stable, and the 
second one claims that A(z) must be invertible (though the 

inverse 1( )z−A  may not be a causal system). 

To recover the source signals from the sensor signals, 
we consider a demixing process (which will be referred to 
as the separator) of the form 

( ) ( ) ( ) ( )t t z tτ
τ

τ
∞

=−∞
= − =�y W x W x , (2) 

where y(t) � [y1(t), …, yN(t)]T and ( )z z τ
τ

τ

∞
−

=−∞
�W W� .  

If the mixing process A(z) is known beforehand, the source 

signals can be recovered by setting as W(z) = A�1(z), of 

course.  Essential difficulty in BSS is that A(z) or A�1(z) 

must be estimated from the observed data x(t) only.  

Besides, the impulse response { τW } might need to take a 

noncausal form in general, i.e., τW ≠ O (τ < 0). 

In BSS the definition of the source signals has an 
indeterminacy.  Namely, if s1(t) , …, sN(t) are source 

signals, their arbitrarily linear-filtered signals e1(z)s1(t) , …, 
eN(z)sN(t) can also be considered source signals because 
they are also mutually independent.  The mixing process 
is then A(z)diag{e1

-1(z),…,eN
-1(z)}.  There is no way to 

distinguish between { }( )is t  and { }( ) ( )i ie z s t  because 

the only information we are given a priori is the fact that the 
sources are mutually independent and the mixing process is 
a linear one. 

IV.  Minimal Distortion Principle 

We call a separator of the following form a valid separator: 
1( ) ( ) ( )z z z−=W D A ,  (3) 

where ( )zD  is an arbitrary nonsingular diagonal matrix; 

( )zD { }diag ( )id z= .  If the separator is valid, each of 

the source signals appears at an output terminal of the 
separator, though it is subjected to a linear transformation 

( )id z .  [More generally we should define a valid 

separator as ( )zW 1( ) ( )z z−= PD A , where P is a 

permutation matrix, but we consider only the case of P = I 
to make the description below simple.] 
    In BSS, all the valid separators are usually considered 
essentially equivalent.  However the following separator 
has a special meaning: 

* 1( ) diag ( ) ( ) (i.e., ( ) diag ( ))z z z z z−⋅ =W A A D A�  (4) 

We call this separator the optimal (valid) separator.  It 
should be noted that this definition of the optimal separator 
has no indeterminacy; it is uniquely determined 
independently of in the indeterminacy in the definition of 
the source signals because the following holds for any 

diagonal matrix ( )zE : 

( ) 1 1diag ( ) ( ) ( ) ( ) diag ( ) ( ) .z z z z z z− −⋅ = ⋅A E A E A A  (5) 

The optimal separator *( )zW  can be characterized 

by either of the following two propositions. 

Proposition 1:  The optimal separator *( )zW is the valid 

separator that minimizes 2( ) ( ) ( )z z z−W A A . 

(Proof)  It is easy to show 
2 2

1/ 2 2

1/ 2

( ) ( ) ( ) ( ) ( )

( ) ( )

z z z z z

f f df
−

− = −

= −�

W A A D A

D A��
. (6) 

So, we have only to consider the minimization of 
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2
( ) ( )f f−D A��  with respect to ( )fD�  for each f.  We 

find that ( ) diag ( )f f=D A��  or ( ) diag ( )z z=D A  

minimizes (6).  Substituting this into (3), we obtain (4).□ 

Proposition 2:  The optimal separator *( )zW  is the 

valid separator that minimizes 2( ) ( )E t t� �−
� �

y x . 

(Proof)  It is easy to derive 
2( ) ( )E t t� �−

� �
y x    (7) 

( ) ( )†1/ 2

1/ 2
tr ( ) ( ) ( ) ( ) ( )f f f f f df

−
= − −� sD A Φ D A� �� �  

where ( )fsΦ  is the power spectrum of s(t), i.e, the 

Fourier transform of the auto-correlation matrix 

[ ( ) ( )]TE t t τ+s s . We have only to consider the 

minimization of ( )( ) ( ) ( )tr f f f− sD A Φ��  

( )†
( ) ( )f f−D A��  with respect to ( )fD�  for each f.  

From the fact that ( )fsΦ  is diagonal, we find that 

( ) diag ( )f f=D A��  or ( ) diag ( )z z=D A  gives the 

minimum of (7).□ 

These two propositions state the minimal distortion 
principle in two manners.  Namely, the optimal separator 
is determined such that the overall transfer function 

( ) ( )z zW A  be as close to ( )zA  as possible, or 

equivalently the separator’s output y(t) be as close to x(t) as 
possible.  The optimal separator can also be characterized 

as a direct constraint on matrix ( )zW .   

Proposition 3:  The optimal separator *( )zW  is the 

valid separator that satisfies 

 1diag ( )z− =W I .   (8) 

(Proof) This equation implies that 1diag ( ) ( )z z−A D  = I .  

This leads to ( ) diag ( )z z=D A .□ 

The optimal separator has some properties that are 
favorable in actual implementation of BSS. 

(i) The separator’s output then becomes ( )ty  

1diag ( ) ( ) ( ) ( ) diag ( ) ( )z z z t z t−= ⋅ = ⋅A A A s A s .  This 

implies that output ( )iy t  is ( ) ( )ii ia z s t , which is the 

i-th source that would be observed at the i-th sensor 
when there were no other source signals.  This property 
will be convenient for interpretation of the signals 
separated and later processing. 

(ii) The optimal separator does not depend on the 
properties of the sources; it depends on the mixing 

process ( )zA  only.  So, even for such nonstationary 

signals as voices, the optimal separator is invariant with 
time as long as the mixing process is fixed. 

(iii) In actual implementation, the separator needs to be 
realized with an FIR filter.  It is desirable that the filter’s 
degree is as low as possible.  Based on the minimal 
distortion principle, the separator is chosen such that the 
separator’s output becomes as close to the sensor’s 
output as possible.  So, it can be expected that the 
separator will be realized with a relatively low degree. 

Including the pioneering work by Herault and Jutten 
some studies on BSS have considered a separator of 
feedback structure; 

( ) ( ) ( ) ( )t t z t= −y x W y ,  (10) 

where ( )zW  is a matrix whose diagonal elements are all 

zeros.  This is equivalent to putting ( )zW  

( ) 1
( )z

−
= +I W  in a feedforward-type separator, leading 

to 1( )diag z−W = I .  So, the present normalization 

itself is not a new idea.  What we want to stress is that the 
constraint (8) can be derived from the minimal distortion 
principle (Propositions 1 and 2).  It is hard to design a 
feedback-type separator while its stability is secured, 
particularly for non-minimum phase mixing processes.  
Using Proposition 2, we can incorporate the constraint (8) 
easily in a multi-dimensional FIR filter, which is 
guaranteed to be stable. 

V.  An Implementation 

     of the Minimal Distortion Principle 
Here, we want to show how the proposed  principle is 
implemented.  We start with an approach proposed by 
Amari et al. [1]  Define 

   
1

( ( )) [log ( ( ))] [ ( )]
N

i i
i

I z E q y t h t
=

− −�W y� ,  (10) 
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where [ ( )]h ty  is the entropy rate of ( )ty  and ( )iq u  

is a pdf assumed for source signal ( )is t .  If the source 

signals are iid (or liner processes in general) and ( )iq u  

approximates well the real pdf of ( )is t , then minimizing 

( ( ))I zW  provides a valid solution.  In actual 

computation, however, the separator must be embodied by 

a FIR filter as 
0

( )
L

z z τ
τ

τ

−

=
�W W� .  The minimization is 

then performed by the following iterative calculation 
(natural gradient learning):  

{ }
0

( ( )) ( )
L

T
r

r
t L t L r

τ

τα ϕ τ
=

∆

= − − − − +�

W

W y y W
, (11) 

where [ ]1 1( ( )) ( ( )),..., ( ( ))
T

N Nt L y t L y t Lϕ ϕ ϕ− − −y �  

and iϕ  is defined as ( ) log ( )i iu d q u duϕ −� .  α is a 

small positive constant. 
This algorithm however has some problems: 

(i) The separator’s outputs are made iid.  Namely, the 
recovered signals will become white and hence they 
might be far different from the source signals observed 
at the sensors. 

(ii) For the same reason an unnecessarily high degree FIR 
filter is required in general. 

(iii) When the source signals are nonstationary, ( )zW  

will fluctuate with time. 
(iv) This algorithm induces an instability when the number 

of the sources is over-estimated. 
To overcome these problems, Choi et al. [2] introduces a 

nonholonomic constraint to the algorithm.  Let ( )d zW  

be a tangent vector at ( )zW  and define 

1( ) ( ) ( )k
k

k
d z d z d z z− −=�V V W W� . (12) 

Choi et al. [2] propose the nonholonomic constraint as 

0diag d =V 0 .  We here extend the constraint to 

( )diag d z =V 0 .  This modifies (11) as 

τ∆W      (13) 

{ }
0

off-diag ( ( )) ( )
L

T
r

r
t L t L rα ϕ τ

=
= − − − − +� y y W  

According to this algorithm, each output ( )iy t  of the 

separator becomes indeterminate with respect to linear 
transformation. 
    To some extent this algorithm alleviates the problems 
in algorithm (11).  However, the indeterminacy 
introduced itself induces a numerical instability; the final 

value of ( )zW  depends on its initial value and moreover 

it fluctuates as the iterative modification proceeds. 
  The minimal distortion principle (Proposition 2) gives 

a solution.  We superimpose the (natural) gradient of 
2( ) ( / 2)E t t L� �− −

� �
y x  to (13) as 

( )
0

{off-diag ( ( )) ( )

( ) ( 3 2) ( )}

L
T

r
T

r

t L t L r

t L t L t L r

τ α ϕ τ

β τ
=

∆ = − − − − +

+ − − − − − +

�W y y

y x y W
(14) 

Parameter β must be a sufficiently small positive constant.  
This algorithm gives the desired separator, independently 

of the initial condition of ( )zW . 

VI.  An Example 

Here, we show a computer simulation.  The mixing 
process is a two-input, two-output system given by 

 
1

1

1 0.5
( )

0.5 1
zz

z

−

−

� �
= � �
� �

A . 

In the first simulation the source signals are ( )is t  

( ) ( )ig z u t=  ( 1,2)i = , where ( )iu t  is a binary-valued 

iid signal with { }iPr ( ) = 1  = 1/ 2u t ±  and  

1 2 3( ) 0.864 0.094 0.852 0.873g z z z z− − −= + − + . (15) 

For iϕ , we use φi(u) = u3, implying 
4 / 4( ) u

iq u e−∝ , 

which is a sub-Gaussian distribution.  The degree of the 

separator and the initial values of { }τW  are set as L = 40 

and ( / 2)Lτ δ τ= −W I , respectively.  Parameters α and 

β are chosen as 1.0×10－5 and 0.1, respectively.  Fig. 1(a) 

is the impulse responses of ( )zW  and ( ) ( )z zW A  

obtained by the algorithm (11); Fig. 1(b) is the result 
obtained by the proposed algorithm (14).  Fig. 2 is the 
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result obtained when ( )g z  is changed as 

( )g z = 1 2 31.749 0.133 0.325 0.794z z z− − −+ + − . (16) 

    Compared to the result of (11), the result obtained by 
our algorithm (14) has better features: 

(i) ( )zW  does not depend on ( )g z , i.e., the property of 

the source signals. 

(ii) / 2 / 2( ) ( ) diag ( )L Lz z z z z− −≈ =W A I A , implying that 

the source signals observed at the sensors appear at the 
separator’s output (with a dead time L/2). 

(iii) The impulse response { }τW  is localized around 

/ 2Lτ = = 20.  This suggests that the degree L of the 
separator may be reduced to less than 10 in this case. 

    Next we consider other source signals, which are 
binary-valued signals generated by a Markov chain given 
by the following conditional probabilities: 

{ }
{ }

i i

i i

Pr ( ) = 1| ( 1) 1  = (1 ) / 2,

Pr ( ) = 1| ( 1) 1  = (1 ) / 2,

s t s t c

s t s t c

± − = ± +

− = ± −�

 (17) 

where parameter c takes a value between 0 and 1.  When 
c is equal to 0, source si(t) is a linear (iid) process.  As the 
parameter c increases, nonlinearity of si(t) is enhanced. 
Ohata and Matsuoka [3] show that the algorithm (11) does 
not give a valid solution stably when c exceeds around 
0.75. 
    The two algorithms are applied to the sources with c = 
0.7 and 0.8.  The overall impulse responses are shown in 
Fig. 3.  While algorithm (11) does not give a valid 
solution for c = 0.8, algorithm (14) provides the optimal 
separator stably.  Theoretical study on stability is a future 
work. 
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(a) The conventional method 
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(b) The proposed method 
 

Fig.1  The impulse response of W(z) and W(z)A(z) obtained by 
the conventional method (a) and the proposed method (b).  The 
sources are given by (15). 
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(a) The conventional method 
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(b) The proposed method 
 

Fig.2  The impulse response of W(z) and W(z)A(z) obtained by 
the conventional method (a) and the proposed method (b).  The 
sources are given by (16). 
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(a) The conventional method 
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(b) The proposed method 
 

Fig.3  The impulse response of W(z)A(z) obtained by the 
conventional method (a) and the proposed method (b).  The 
sources are given by (17) with c = 0.7 and c = 0.8. 
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