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Abstract: Blind source separation (BSS) is a method for

recovering a st of source sgnds from the observation of
thelr mixtures without any prior knowledge about the
mixing process.  In BSS the definition of a source signd
has an inherent indeterminacy; any linear trandform of a
source sgnd can dso be considered asource signd.  Due
to this indeterminacy, there are an infinite number of vaid
separators that can extract the source dgnds. This paper
proposes a principle for choosng an optima  separator
among them in a catan sense. The optima choice is
meade such thet the observed sgnds are the least subjected
to didortion by the separaor. The proposd
normdization has some favorable fegtures, particularly for
BSS of convolutive mixture.

I. Introduction

Blind source separaion (BSS) isamethod for recovering a
st of source Sgnds from the observetion of their mixtures
without any prior knowledge about the mixing process. It
has been receiving a great ded of attention from various
fidds as a new sgnd processng technique.  In view of
the leve of complexity, the mixing process can be
classfied into two types indantaneous mixture and
convolutive mixture.  In this paper we ded with
convolutive mixturein generd.

Inherently BSS has two kinds of indeterminecy.
One is the indeterminacy in the numbering of the sources
and the other is that in the scding or normdization. The
|atter indeterminacy is more essentid and will be addressd
in this paper. The indgerminacy has usudly been
congdered unsubgtantia, but it cannot be overlooked in
view of actud implementations and gpplications of BSS.
This paper addresses a basic quedion of what kind of
normdization of the separator isoptimd.  An answer will
be given based on the Minima Digortion Principle
Bdow we describe what the prindple is why it is
important, and how it can be implemented.

II. Mathematical Nomenclature

Here we summarize severd notations appearing in the

following sections  Matrix Xz[xij] and trander

function matrix X(z)= ) X,z below ae adways

k=-00

square matrices, and the coefficients X, of X(z) ae
al red-valued.

+  Frequency trandfer function X(e®™) associated with
X(z) is denoted by X(f) . If X(f) is
nonangular for every £, then X(z) is sad to be

nonsngular.
e The conjugate of the trangoose of matrix X is denoted

as X'. The same notation is dso used for tranfer
functionmatrix X(z) as X'(z)=X"(z™1).

* |x| representsthe Euclidean norm of vector x.  trX

gandsfor the trace of matrix X.
« The Frobenius norom of marix X is defined as

1/2
NEGsY =(z|x[j |2] . Also the norm of
ij

transfer function matrix X(z) is defined as |X(z)|
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equivdently  ||X(z))

(1, IKoof ar)

1/2
or diag{d,} represnts the
diagona metrix which hes diagond entries d ,,...,d , .

diagX (off-diagX) satsevery nondiagond (diagond)



entry of matrix X to be zero.
e J(1)21(r=0),0(r 20).

III. The Mixing Process and

the Demixing Process
Let us condder a Stuaion where gatidicdly independent
random dignds s{?) ({ = 1,..., N) ae generated by N

sources and their mixtures are obsarved by N sensors. |t
is assumed that every source sgnd s(7) is a Saionary
random process with zero mean, and the sensors’ outputs

x{?) (=1,..., N) aregiven by alinear mixing process.

x(t) = zo Ass(t-T) =A(2)s(), )

where s() 2 [s10), ..., ss(@)]”, X(@) 2 [, ..., ()], and

A(2) = i Az . It is known tha, in order to redize
=0

BSS, at most one source sgnal is alowed to be Gaussan.
For the mixing process we assume two conditions

> ||A-]|<c and nonsinguarity of A(z). The firg
7=0

condition gates that the mixing process is gable, and the
second one damsthat A(z) must be invertible (though the
inverse A™(z) may not beacausa system).

To recover the source sgnds from the sensor Sgndls,
we consider a demixing process (which will be referred to
asthe separator) of the form

@

Y= X Wex(=1) =W(2x(0),

where () 2 [, ..., w(@)]” ad W(z) éémwrz-r .

If the mixing process A(z) is known beforehand, the source
signas can be recovered by setting as W(z) = A™(2), of

course.  Essentid difficulty in BSS is that A(z) or A™(2)
must be edimated from the observed data x(7) only.
Besdes, the impulse response { W; } might need to take a

noncausa formingenerd,i.e, W;z 0 (7<0).

In BSS the definition of the source sgnds has an
indeterminacy. Namdy, if s1(f) , ..., sMf) are source
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sgnds, their arbitrarily linear-filtered Sgnds ey(2)s1(9) , ...,
ex(z)sM() can dso be conddered source sgnds because
they are dso mutudly independent.  The mixing process
is then A(x)diag{e;'(2),....en’(2)}. There is no way to

diginguish between {5,()} ad {e,(z)s,(r)} because

the only information we are given apriori isthefact thet the
sources are mutudly independent and the mixing processis
alinear one.

IV. Minimal Distortion Principle
Wecdl aseparator of thefollowing form avaid separator:
W(z)=D(2)A™(2), )

where D(z) isan abitrary nonangular diagond matrix;

D(z) =diag{d,(z)} . If the separator is valid, each of

the source sgnds gopears a an output termind of the
separator, though it is subjected to a linear trandformetion

d,(z) . [More generdly we should define a vaid

spador & W(z) =PD(z)A™'(z) , whee P is a

permutation meatrix, but we consder only thecaseof P =1
to make the description below smple]

InBSS, dl the vdid separators are usudly conddered
essentidly equivdent.  However the following separator
has a pecia meaning:

W' (2) 2 diag A(z) (A ™(2) (i.e,D(z) =diag A(z)) (4)

We cdl this separator the optimd (vdid) separator. It
should be noted that this definition of the optima separator
has no indgerminacy; it is uniqudy determined
independently of in the indeterminacy in the definition of
the source sgnas because the following holds for any

diagond matrix E(z):

diag A (2)E(z) {A(2)E(z)) " = diag A(z) (A(2) . (5)
The optimal separator W' (z) can be characterized

by either of the following two propositions.

Proposition 1: Theoptimal sparator W' (z) isthevaid

separaior that minimizes |W(2)A(z) - A(2)[".

(Proof)
[W(2)AGE) - AG)[ =[D() -AG)[
= [L. [B:r-Anf o

So, we have only to condder the minimization of

Itiseasy to show

©)

2



[D()-A()| withrespectto B(/) foreachs We
find tha D(f)=diagA(f) or D(z)=diagA(z)
minimizes(6). Subgtituting thisinto (3), weobtain (4).0
Proposition 2: The optima sgparator W' (z) is the

valid separator that minimizes E["y(t) - x(t)”zJ .
(Proof)
E[ |y - x| )
= [* (D) -A())@,(N(BU) -AW)) df
where @ (1) is the power spectrum of s(9), i.e the

Fourier  transform  of
E[s(t)s"(t+1)] . We have only to condder the

Itiseasy to derive

the auto-corrddion matrix

minimization of

o (D(/) = A(S)) @, (/)
(B()-A()) with respect to B(/) for each

From the fact that ® (/) is diagond, we find that
D(f)=diagA(f) or D(z)=diagA(z) gives the

minimum of (7)3

These two propogtions date the minimd digtortion
principle in two manners.  Namely, the optimd separator
is determined such that the overdl trander function

W(z)A(z) be as cdosxe to A(z) as possble or

equivaently the separator’s output y(7) be as close to x(f) as
possble.  The optima separator can aso be characterized

asadirect congtraint on matrix W(z).

Proposition 3: The optima sgparator W' (z) is the
vaid separator that satisfies

diagW™(z) =1I. )

(Proof) This equation impliesthat diag A(z)D™(z) =1.

Thisleadsto D(z) =diagA(z) O
The optimd separator has some properties that are
favorablein actud implementation of BSS.

(i) The sparaor's output then  becomes  y(7)
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= diagA (z) A (2)A(2)s(¢) =diagA(z) 5(r). This

implies thet output »,(7) is a,(z)s,(¢), which is the

i-th source that would be obsarved & the ith sensor
when there were no other source signals.  This property
will be convenient for interpretation of the signds
separated and later processing.

(i) The optimad separator does not depend on the
properties of the sources it depends on the mixing

process A(z) only. So, even for such nondationary

signds as voices, the optimd separator is invariant with
time aslong asthe mixing processisfixed.

(iii) In actud implementation, the separator needs to be
redized with an FIRfilter. It isdesrablethet thefilter's
degree is as low as possble Based on the minima
digortion principle, the separator is chosen such that the
separaor’s output becomes as dose to the sensor's
output as posshle So, it can be expected that the
separator will be realized with ardatively low degree.

Including the pioneering work by Herault and Jutten
some gudies on BSS have conddered a separator of
feedback structure;

YO =x(0) -W(y(0), (10)

where W(z) isamatrix whose diagond dements are dll

Zeros. This is equivdent to putting W(z)

-1

= (I +V_V(z)) in a feedforward-type separator, leading

to diagW™(z) =1. $So, the present normdization

itsdf isnotanewidea  What we want to dressisthat the
condraint (8) can be derived from the minimal digortion
principle (Propositions 1 and 2). It is hard to design a
feedback-type separator while its sability is secured,
paticularly for non-minimum phase mixing processes.
Using Proposition 2, we can incorporae the congtraint (8)
eedly in a multi-dimensond FR filter, which is
guaranteed to be stable.

V. An Implementation

of the Minimal Distortion Principle

Here, we want to show how the proposed principle is
implemented. We dart with an gpproach proposed by
Amarietd.[1] Define

1(W(2)) = —éE[log a: (i) —Aly@],  (10)



where h[y(z)] is the entropy rate of y(¢r) and g,(u)

is a pdf assumed for source Sgnd s, (7). If the source

sgnds are iid (or liner processes in generd) and ¢, (1)
approximates well the red pdf of s,(¢) , then minimizing

I(W(z)) provides a vdid solution. In actud

computation, however, the separator must be embodied by
aFIR filter s W(z)2 Y W,z . The minimization is
7=0

then peformed by the following iterative caculaion
(natural gradient learning):

AW

T

_ L, e
=afW, g -5y (-1 1 +r)w,]

where ¢(y( = L)) 2 [@, (0t = 1)), 8y (0 (¢ ~L))]

and ¢, isddfined as @, (u) =-dlogq,(u)/du. aisa

small positive congtant.

Thisdgorithm however has some problems:

() The separator’s outputs are made iid. Namdly, the
recovered signds will become white and hence they
might befar different from the source signas observed
at the sensors.

(i) For the same reason an unnecessaxily high degree FIR
filterisrequired in generd.

(i) When the source sgnals are nondaionary, W(z)
will fluctuate with time.

(iv) Thisagorithm induces an indability when the number
of the sourcesis over-estimated.

To overcome these problems, Choi & d. [2] introduces a

nonholonomic condraint to the dgorithm. Let dW(z)

be atangent vector a& W(z) and define

dv(z) = Z dv,z" 2dW(Z)W™(z2). (12

Choi & d. [2] propose the nonholonomic condraint as

diagdV,=0 . We hee extend the condrant to
diagdV(z) =0. Thismodifies(11) as
AW, (13

AW, =-a'y, {off-diagp (y(: ~L)y" (t =L T +r)
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= _ai {Off'di89¢(Y(t —L)y'(t-L -1 +r)} W,

According to this agorithm, each output y,(¢) of the

separaor becomes indeterminate with respect to linear
transformation.

To some extent this dgorithm dleviates the problems
in dgorithm  (12). However, the indeterminacy
introduced itsdf induces a numericd ingability; the find

vdueof W(z) dependsonitsinitid vaue and moreover

it fluctuates as the iterative modification proceeds.
The minimd digortion principle (Proposition 2) gives
a solution.  We superimpose the (naturd) gradient of

E[||y(t) —x(t —L/2)||2J to(13) as

(14
+B(y(t -L) -x(t =3L/2))y" (t =L -1 +)}W,

Parameter S mugt be a aufficiently smdl positive congtant.
This dgorithm gives the desred separator, independently

of theinitial conditionof W(z) .

VI. An Example

Here, we show a computer smulation. The mixing
processisatwo-input, two-output system given by

1 0.5z
A(z) = .
@) {0.52_1 1 }

In the firg Smuldion the source sgnds are s, ()
=g(2)u,(t) (1=12), where u,(¢) is a binary-vaued
iidsigna with Pr{u ()= +1 =1/2 ad

2(z) =0.864+0.094z™" -0.852z7 +0.873z7°. (15)

For ¢, we use p(u) = o, implying g, (u) De™"*,
which is a sub-Gaussan didribution.  The degree of the
separator and theinitial valuesof {W,} aresstasL =40

and W, =5(1-L/2)1, respectively. Parameters a and
Barechosenas 1.0x 107° and 0.1, respectively.  Fig. 1(3)

is the impulse reponsss of W(z) and W(z)A(z)

obtained by the dgorithm (11); Fg. 1(b) is the result
obtained by the proposed agorithm (14). Fg. 2 is the

4



result obtained when g(z) ischanged as

2(z)=1.749+0.133z " +0.325: 2 -0.794z 2 . (16)

Compared to the result of (11), the result obtained by
our dgorithm (14) has better features:

(i) W(z) doesnotdependon g(z), i.e, the property of
the source sgnals.
(i) W(2)A(z) =z "1 =z""2diag A(z) , implying thet

the source Sgnals observed &t the sensors gppear &t the
separator’soutput (with adead time L/2).

(iii) The impulse response {W,} is localized around

T=L/2=20. Thissuggeststhat the degree L of the

separator may be reduced to lessthan 10 in this case.

Next we condder other source Sgnds which ae
binary-vaued signds generated by a Markov chain given
by the following conditiona probabilities:

Pr{s; ()= +1|s(t-D) =1} = (L+c)/2,

Pr{s;()= Fls(t-) =%} =(1-c)/2,
where parameter ¢ tekesavaue beween Oand 1. When
cisequd to O, source s(?) isalineer (iid) process. Asthe
parameter ¢ increases, nonlinearity of s(7) is enhanced.
Ohata and Masuoka [3] show that the dgorithm (11) does
not give a vdid solution stably when ¢ exceeds around
0.75.

Thetwo agorithms are gpplied to the sourceswith ¢ =
0.7and 0.8. The overdl impulse regponses are shown in
Fg. 3. While dgorithm (11) does not give a vdid
solution for ¢ = 0.8, agorithm (14) provides the optimal
separator gably.  Theoreticd sudy on gability is a future
work.
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the converttional method (8) and the proposed method (b). The
sources are given by (15).
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Fig3 The impulse reponse of W(z)A(z) obtained by the
conventiond method (8) and the proposed method (b). The
sourcesaregiven by (17) withc=0.7 andc=0.8.
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