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ABSTRACT 

Recently suggested non-negative matrix factorization (NMF) 
seems to overcome fundamental limitations of factor analysis at 
least in theoretical aspect. NMF cost function uses Poisson 
statistics as a noise model, rather than the Gaussian statistics, 
and provides a simple learning rule, in contrast to the tricky 
optimization in factor analysis. To study the feasibility of NMF 
for the analysis of dynamic image sequences in nuclear 
medicine, NMF was applied to H2

15O dynamic myocardial PET 
images acquired from dog studies, and the results were 
compared with those obtained by conventional factor analysis 
method. Using NMF we could obtain basis images 
corresponding to major cardiac components. Their time-activity 
curves showed reasonable shapes that we have been familiar 
with. With the assumption of proper number of factors, NMF 
presented good results at least similar with those by factor 
analysis. Our results showed that NMF would be feasible for 
image segmentation and factor extraction from dynamic image 
sequences in nuclear medicine. 

1. INTRODUCTION 

By means of dynamic positron emission tomography (PET) 
study, quantitative information on regional physiological 
processes is obtainable. Water labeled with 15O is a favorable 
radiopharmaceutical for the measurement of myocardial blood 
flow (MBF) using dynamic PET scan, since it is metabolically 
inert and its first-pass extraction across myocardium is high 
enough [1]-[2]. 

Owing to these attractive and straightforward properties of H2
15O 

as a flow agent, the kinetics of H2
15O can be described by the 

simple single compartment model. In conjunction with 
appropriate correction parameters for partial volume and 
spillover effect due to the limited spatial resolution of PET image 
and cardiac motion, MBF can be estimated using this kinetic 
model and the radioactivity concentration time activity curve 
(TAC) in arterial blood and myocardium [1]-[4]. 

The application of this kind of analysis to myocardial PET image 
is usually easier than other images since we can obtain the 
arterial input function from the left ventricular (LV) blood pool 
activity in the PET image without any sampling of arterial blood. 
The derivation of LV input function from myocardial H2

15O PET 
is, however, not so easy since H2

15O is rapidly diffused across the 

myocardium and distributed evenly over the ventricles and 
myocardium. The considerable amount of statistical noise 
generated in short dynamic frames as well as the diffusible 
property of H2

15O hinders the identification of the cardiac 
components required to define region of interest (ROI) on the LV 
region for input function and on the myocardium for tissue TAC. 

A blood pool image, therefore, is often obtained by performing 
C15O PET scan, and the myocardium image is generated by 
subtracting a rescaled blood pool image from either a 
transmission image or an image of the washout phase of the 
dynamic H2

15O scan for ROI definition [2], [5]. However, several 
disadvantages have been reported with the use of the C15O scan: 
radiation dose to the patient, scan duration, and possibility of 
movement artifact due to misalignment between C15O and the 
other images increases, and additional gas delivery system and 
control are required [5]. 

Data driven approaches such as factor analysis [5]-[6] and 
independent component analysis [7] have been attempted to 
separate each cardiac component and to extract the LV input 
function from the dynamic H2

15O PET image itself. Since the 
pioneering works by Barber [8] and Di Paola et al. [9], factor 
analysis algorithm has been widely used for handling of dynamic 
image sequences in nuclear medicine [6], [10]. Although such a 
factor analysis method, based on principal component analysis 
followed by oblique rotation of factor loadings, has been 
considered a useful tool for processing dynamic images, factor 
analysis assumes Gaussian statistics, which may not be 
appropriate for gamma camera images. Also, the currently 
available methods for oblique rotation of factor loadings with 
assumptions of a priori knowledge are somewhat tricky to apply. 

Recently suggested non-negative matrix factorization (NMF) 
seems to overcome this fundamental limitation of factor analysis 
at least in theoretical aspect [11]-[13]. One of the major 
advantages of NMF over factor analysis with positive constraints 
is that the NMF cost function uses Poisson statistics as a noise 
model. This is more appropriate for gamma camera images than 
the Gaussian model because the gamma camera images really 
represent some sort of photon counts. In addition, NMF provides 
a nice simple learning rule, which is guaranteed to converge 
monotonically without the need for setting any adjustable 
parameters such as a learning rate, in contrast to the tricky 
optimization in factor analysis. 

 

629



Figure 1. H2
15O dynamic myocardial PET (normalized count in each frame). 

To study the feasibility of NMF for the analysis of dynamic 
image sequences in nuclear medicine field, NMF was applied to 
H2

15O dynamic myocardial PET images, in which we intended to 
segment major cardiac components and derive their time-activity 
curves using NMF. The results were compared with those 
obtained by conventional factor analysis method. 

2. MATERIALS AND METHODS 

2.1 Image Acquisition and Reconstruction 

H2
15O PET scans were performed on seven dogs at rest (n=7) and 

after pharmacological stress (n=5) using adenosine or 
dipyridamole. All the scans were acquired with an ECAT 
EXACT 47 scanner (Siemens-CTI, Knoxville, TN), featuring an 
intrinsic resolution of 5.2 mm FWHM (full width at half 
maximum) and 47 simultaneous contiguous planar images of 3.4 
mm thickness for a longitudinal field of view of 16.2 cm. Before 
H2

15O administration, transmission scanning was performed 
using three Ge-68 rod sources for attenuation correction. 
Dynamic emission scans (5sec×12, 10sec×9, 30sec×3) were 
initiated simultaneously with the injection of 555~740 MBq 
H2

15O and continued for four minutes.  

Transaxial images were reconstructed, by means of a filtered 
back-projection algorithm employing a Shepp-Logan filter with 
cut-off frequency of 0.3 cycles/pixel, as 128×128×47 matrices 
with a size of 2.1×2.1×3.4 mm. 

2.2 Preprocessing 

The initial eighteen frames (two minutes) of PET images were 
used for analysis. The dynamic PET images were also reoriented 
to short axis and re-sampled to produce 1 cm thickness in order 
to increase the signal to noise ratio. We reoriented each frame of 
the dynamic images using the parameters for rotation and the 
translation determined upon static images, which were obtained 
by summing dynamic images. 
Only the cardiac regions were then masked to remove the extra-
cardiac components and to reduce the quantity of data and hence 

the burden of calculation. The mask size was 32×32 (pixel×pixel), 
and the masked images were resized to 8×8 images to reduce 
statistical fluctuation. The resulting masked images with 
dimensions of 8×8×6×18 (pixel×pixel×plane×frame) were 
reformatted to 18×384 (frame×pixel) matrices for further analysis. 

2.3 Factor Analysis 

We used the factor analysis algorithm originally established by 
Barber [8] and Di Paola et al. [9] and employed for extracting 
ventricular input functions and tissue curves from dynamic 
myocardial PET using 13NH3 and FDG [10]. 

The underlying assumption behind factor analysis is that the 
observable time activity curve for each voxel in the PET images 
is equivalent to the weighted summation of the pure 
physiological factors, such as the right ventricular (RV), LV, and 
tissue time activity curves. Reformatted 384 TACs of the pixels 
(dixels) in the mask were normalized and submitted for the 
principal component analysis (PCA) to determine a low-
dimensional subspace in which mainly the relevant part of the 
dixels is represented. Oblique rotation of the basis vectors from 
the PCA was performed to obtain non-orthogonal basis vectors, 
namely the factors, having a physical or physiological meaning. 
The iterative apex-seeking method suggested by Barber was used 
for oblique rotation [8]. Stating values for apex-seeking were 
selected by the method suggested by Di Paola et al. [9]. 

Factor images were then computed by means of the orthogonal 
projections of all the dixels of the original masked dynamic 
images (32×32×6×18 matrix) onto the factors [8], [9]. The 
number of factors was determined by visual assessment of the 
factors and factor images. Since factor analysis produced only the 
factors and factor images with unfamiliar shapes when the 
assumed number of factors was incorrect, the determination of 
the number of factors by visual assessment was easy and reliable. 

Since each factor was in normalized units, LV input function was 
obtained by rescaling the factor corresponding to the LV TAC as 
performed by Wu and her colleagues in their factor analysis for 
13NH3 and FDG PET data [10]. We used the average of the pixel 
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values above 50 % of the maximum pixel value in the LV factor 
image as a scale factor. 

2.4 Non-negative Matrix Factorization 

We followed notations used by Lee and Seung originally [11]-
[13]. Let’s assume a dynamic image with n non-negative voxels 
and m frames, and reformat the image as an n × m matrix V, each 
column of which correspond to each frame of dynamic image. 
NMF factorize this matrix V into an n × r matrix W and an r × m 
matrix H approximately (V≈WH) with a constraint that negative 
elements are not allowed in W and H. This NMF factorization is 
optimized by minimizing the cost function to measure the 
distance between V and WH, in which each voxel Viµis regarded 
as a summation of the product (WH)iµ and Poisson noise. 
Consequently, the µth column of W (µ= 1, 2, ⋅⋅⋅, r) represents the 
µth basis image, and the µth row of H corresponds to the time-
activity curve of this basis image.  

 

Two alternative formulation of NMF can be used differently 
according to the cost function to be minimized. In this study, we 
used a following update rule that makes the divergence between 
V and WH minimized with the non-negativity constraints, rather 
than Euclidean distance between V and WH [12]. 

Each frame of the masked region was then submitted to the 
NMF. All the data points were passed 100 times into the network 
iteratively. The average of the voxel values above 50 % of 
maximum voxel value in each basis image was used to rescale its 
time-activity curve. 

3. RESULTS AND DISCUSSION 

Fig.2 shows the basis images (left) and their time-activity 
curves (right) obtained using NMF from a dog PET data at rest. 
It is evident that the three basis images correspond to major three 
cardiac componenents, a) right ventricle, b) left venticle, c) 
myocardium. Also, their time-activity curves showed reasonable 
shapes that we were familiar with (higher peak in right ventricle, 
more dispersion in left ventricle, and others).  

With the assumption of proper number of factors, NMF 
presented good results at least similar with those by factor 
analysis. Although further verification is necessary, our 
preliminary study shows that NMF would be feasible for image 
segmentation and factor extraction from dynamic image 
sequences in nuclear medicine. 
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Figure 2. Basis images (left) and their time-activity curves (right) obtained using NMF from a dog PET data at rest.
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