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ABSTRACT

We present a novel unsupervised artificial neural network
for the extraction of common features in multiple data sources.
This algorithm, which we name Exploratory Correlation Anal-
ysis (ECA), is a multi-stream extension of a neural imple-
mentation of Exploratory Projection Pursuit (EPP) and has a
close relationship with Canonical Correlation Analysis (CCA).
Whereas EPP identifies ”interesting” statistical directions in
a single stream of data, ECA develops a joint coding of the
common underlying statistical features across a number of
data streams. It has been shown that the principle of con-
textual guidance may be used to find a sparse coding of
the features in dual natural image patches that is very dif-
ferent from single stream sparse coding experiments. The
network only identifies those features which exist in both
data streams and thus tend to be fewer in number and more
complex in nature.

1. INTRODUCTION

In many real world situations, information is not available in
a direct and clear way due to corruption of the signals. One
approach to uncovering the inherent structure from these
signals is to perform several measurements, possibly using
different sensing techniques. By working on the principle
that all of the signals share the same fundamental informa-
tion, we may process the data in multi-streams in such a way
that we identify significant features within streams that are
also common between streams.

One method for extracting accurate information from
multiple data sources is to use contextual guidance [1]. The
underlying principle of this approach is that a neuron or pro-
cessing unit not only uses information directly available to
it, but also information about the context in which it oper-
ates. Neurophysical evidence appears to support the idea
that the brain uses contextual guidance to obtain more accu-
rate information about the surroundings.

In this paper we present a neural method capable of ex-
tracting features from different data sources and combining

those to form a sparse joint coding. Other statistically based
dual stream neural architectures have been proposed [2] [3] [4]
but these tend to be based on second-order canonical cor-
relation analysis. The method that we propose is capable
of searching for higher order shared structure between data
streams. Information theoretic based approaches have also
been proposed which concentrate on the stereo disparity
problem [5] or on contextual guidance [1].

We demonstrate the network with well-known artificial
data for this area of research before applying it to two types
of natural image data. The first of the natural image data
experiments uses contextual data in that two neighbouring
image patches are chosen while the second experiment uses
stereo data. In the latter case there is considerable overlap
between two image patches and there may also be nonlinear
disparities. The resultant weight vectors for both of these
experiments prove to be quite different.

2. EXPLORATORY PROJECTION PURSUIT

Before we outline the ECA algorithm, it is useful to explain
the method on which it is based - Exploratory Projection
Pursuit (EPP). EPP is a statistical technique that is used to
visualise structure in high dimensional data. We project the
data to a lower dimensional space which enables us to look
for interesting structure manually. The projection should
capture all of the aspects that we wish to visualise, which
means it should maximise an index that defines a degree of
’interest’ of the output distribution [6].

If the criterion of interest is determined by variance, we
obtain the well-known principle components analysis. In
this case, the criterion used to learn the basis vectors is
determined entirely by the variance of the projected data.
However, often the important features cannot be uncovered
by taking only variance into account. Other measures must
be defined that can help us to find the optimal basis set.

Another measure of interestingness is based on an ar-
gument that states that random projections tend to result
in Gaussian distributions [7]. Therefore, we can define an
interesting projection as one that maximises the non gaus-
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sianity of the output distributions. Several measures of non
gaussianity currently exist. In this paper we will concentrate
on measures that are based on kurtosis and skewness.

2.1. Neural EPP

Our ECA network is most strongly related to the single
stream, neural EPP algorithm based on the negative feed-
back framework [6]. The operation of the EPP network is
outlined by (1) to (3). (1) describes the feed-forward step,
in which the input values, x , are multiplied by the weights,�

, and summed to activate the output. This is followed by
a feedback phase (2) in which the output values, y , are fed
back through the weights and subtracted from the input to
form a residual, r. This residual is then used in the weight
update rule (3), where � is a learning parameter.

y � �
x (1)

r � x � ���
y (2)� � � � r

�
f � y � (3)

The function f � y � in (3) causes the weight vectors to
converge to directions that maximise a function whose deriva-
tive is f � y � . Thus, if f � y � is linear, i.e. f � y �	� y, the
EPP algorithm performs identically to Oja’s subspace al-
gorithm [8]. If the function is f � y ��
 y � , the third moment
in the data is maximised and if f � y �
 y � is used, the fourth
moment in the data is maximised.

For reasons of stability, the output functions are replaced
by functions that have the same truncated Taylor Expansion.
Instead of using f � y ��� y � the function f � y �������������� y ���
y ���� y �� ���� y � ��� �!� may be used.

3. EXPLORATORY CORRELATION ANALYSIS

We have extended the Neural EPP algorithm to allow for
multiple input streams. Both streams are assumed to be have
a set of common underlying factors. Mathematically we can
write this as

y � � �
x �

y � �#" x �
The input streams are denoted as x � and x � , the pro-

jected data as y � and y � and the basis vectors are rows of
the matrices W and V. Each input stream can be analysed
separately by performing EPP and finding common statis-
tical features that have maximum non-gaussianity. How-
ever, as we know that the features we are looking for have
the same statistical structure, we can add another constraint
which maximises the dependence between the outputs. This
is depicted schematically in Figure 1.

1x 2x

1y 2y

W V

Fig. 1. Diagram of the ECA network

The simplest way to express this formally is by max-
imising $%� g � y � � � g � y � ��� . We also need to ensure the weights
do not grow without bound, which we can achieve by adding
weight constraints

� � � �'& and " � "(�') . Writing
this as an energy function with Lagrange parameters *,+.- /
and 01+2- / [9] we obtain (4).

3 � �54 "6�7� $%� g � � x � � � g �8" x � ��� �9: ;<
+>= �

;<
/?= � * +.- / � w

�+ w/ �5@ +2- / � �
9: ;<
+>= �

;<
/?= � 01+2- /A� v

�+ v /B�DCE+.- /F� (4)

The energy function (4) can be differentiated with re-
spect to the weights G�+.- / and HI+2- / . The maxima of (4) are:

J � 3 � �54 "K���J � �#$%�?� g � y � �ML g N8� y � �?� x � � � �PO � �#Q (5)J � 3 � �54 "K���J " �R$%�?� g � y � �ML g N8� y � ��� x �� � ��S "T�RQ (6)��� � �R& (7)"U" � �R) (8)

The L operator is defined as the element-wise multi-
plication of two vectors. The Lagrange multipliers can be
calculated by multiplying (5) and (6) by

� �
and " �

re-
spectively. Inserting (7) and (8) results in:

O � ��$%�?� g � y � �1L g N � y � ��� x � � � � � &UV �S � ��$%�?� g � y � �1L g N � y � ��� x �� �?" � ) V �
Reinserting these optimal Lagrange parameters into (5) and (6)

yields:

J � 3 � �54 "K���J � � $%��� g � y � ��L g N � y � �?� x � � ���W�$%��� g � y � ��L g N � y � �?� x � � ��� ��� & V � �J � 3 � �54 "K���J " � $%��� g � y � ��L g N � y � �?� x �� �X�$%��� g � y � ��L g N � y � �?� x �� ��" � ) V � "
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Using stochastic gradient descent on these functions yields
the following rules:

� � � �ZY[� g � y � �1L g N � y � ���!� x � � � y
� � � �]\ (9)� " � �ZY[� g � y � �1L g N � y � ���!� x �� � y
�� "^�_\ (10)

We have set the & and ) matrices to the identity matrix,
which causes the weights

�
and " to converge to orthonor-

mal weight vectors.
As with the neural EPP algorithm, we need to replace

the output functions with stable versions for the ECA al-
gorithm. In contrast to the neural EPP algorithm, we not
only require the derivative of the function to be maximised,
but also the function itself. We therefore need an addi-
tional stable function, whose truncated Taylor expansion is
g � y �^� y ` . The function we chose for the experiments in
this paper is g � y �� 9 �ba!cedM�f� y `g� .
3.1. Artificial data set

A simple experiment was performed to test the network.
We used an artificial data-set, generated from a kurtotic and
a normal data source. The inputs to the network are two
three-dimensional input vectors as shown in Table 1. We
used three types of data source, each with a different kurto-
sis value. Input h � and h � were generated by taking a value
from a normal distribution and raising it to the power of 5.
Input h � was generated from a normal distribution raised to
the power of 3. The common data source h � is therefore
less kurtotic than input h � or h � . The last data source we
used is h ` , which was taken from a normal distribution. In
order to show the robustness of the network we added zero
mean Gaussian noise with variance 0.2 to each of the inputs
independently.i � - � �#h � �kj �2Q 4 Q�� : � i � - � �#h � �Pj �2Q 4 Ql� : �i � - � �#h � �kj �2Q 4 Q�� : � i � - � �#h � �Pj �2Q 4 Ql� : �i � - � �#h ` �kj �2Q 4 Q�� : � i � - � �#h ` �Pj �2Q 4 Ql� : �
Table 1. Artificial data set. h � and h � are more kurtotic
than the common source h � . h ` is a normal data source.

After training the network for 50000 iterations with a
learning rate of 0.003, the weights converged to the val-
ues shown in Table 2 The network has clearly identified the
common kurtotic data source and has ignored the common
normal input and the independent input sources h � and h � ,
although they are more kurtotic than h � .
3.2. Dual Stream Blind Source Separation

In this section we describe an experiment, which is an adap-
tion of the blind source separation problem. Instead of hav-
ing one set of inputs, we generate two sets of inputs, which

w 0.0029 1.0000 0.0028
v 0.0043 1.0000 -0.0182

Table 2. Weightvectors after training the ECA network on
artificial data.

are both different linear mixtures of the same source sig-
nals. We used mixtures of three source signals, which were
created artificially by randomly taking values from a normal
distribution and raising them to the power of 3,

The mixing matrices, & and ) , are shown below.

&m�
no :qp 9pq:srr :st

uv
)w�

no tqx 9rzy {9|p}t
uv

To show the unmixing properties of the network, we ex-
amine &�~ V ��� �� - � � �

and )K~ V �?� �� - � � �
.

&�~ V ��� �� - � � �� �
no ��Ql� QAQ 9 t � 9 � Q�QAQ x ��Q�� Q�Q�Q x9 � QAQ�Q : Q�� Q tl9�9 ��Q�� Q�Q tA���Ql� QAQ :e9 ��Q�� Q�Q t�x 9 � QAQ�QAQ

uv

)^~ V ��� �� - � ���� �
no ��Q�� Q�Q :e9 � 9 � Q�Q�Q x ��Ql� QAQ 9g{9 � Q�QAQ : Q�� Q t�9Ft ��Ql� QAQ tl9��Q�� Q�Q :e9 ��Q�� Q�Q tAx 9 � QAQ�Q�Q

uv

These matrices show that combining the mixing, spher-
ing and unmixing operations result in matrices that contain
a one or minus one in each row. This indicates that the
ECA algorithm has successfully unmixed the sources and
has identified the common sources.

4. CONNECTION TO CCA

The linear one unit exploratory correlation analysis network
is closely related to classical CCA. When the network is
fully converged, the expected change in weights will be
zero [10].

$%� J w ��� $%�2��� � � x � � ��� � w � � � �� �e$%� v � x � x � � � w
�

x � x �� vw
� � ���RQ$%� J v ��� $%�2��� � � x �� ��� � v � � � �� �e$%� w �

x � x �� � v
�

x � x � � wv
�� ���RQ

Writing the term w
�

x � x �� v as * � , v
�

x � x � � w as * � , $%� x � x �� �
as ~ � - � and $%� x � x � � � as ~ � - � we obtain:

v
� ~ � - � �#* � w �

w
� ~ � - � �m* � v �

and

~ � - � ~ � - � w �m* � * � w~ � - � ~ � - � v �#* � * � v
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When the network is stable, the weight vectors will there-
fore be eigenvectors of ~ � - � ~ � - � and ~ � - � ~ � - � . Classical
CCA however, requires the solutions to be eigenvectors of~ V �� - � ~ � - � ~ V �� - � ~ � - � and ~ V �� - � ~ � - � ~ V �� - � ~ � - � . The ECA net-
work is capable of performing CCA, if the data-sources x �
and x � are sphered prior to training the network by pre-
multiplying them by ~ V �?� �� - � and ~ V ��� �� - � , which causes ~ � - �
and ~ � - � , and therefore their inverses to become identity

matrices. The resulting CCA weightvectors will be ~ V �?� �� - � w

and ~ V �?� �� - � v.

4.1. CCA Experiment

An experiment was carried out on a data set comprising 88
students’ marks on five module exams [11]. The five mod-
ules can be divided in three open book exams and two closed
book exams. The object of the experiment is to see how
closely the ability to do an open book exam is correlated to
the ability to do a closed book exam. We may also be in-
terested in predicting the open book results from the closed
book results.

We compare the results of three different CCA tech-
niques. The first is the standard statistical CCA technique.
This is assumed to be the most accurate and is used as a
reference. The other two results are obtained by using the
neural method as described by [2] and by using the ECA
network. Both neural methods used 50,000 iterations. The
CCA network used a learning rate 0.0001 and the ECA net-
work used a learning rate of 0.0005. The results are shown
in Table 3.

Standard Statistical CCA results
w � 0.0260 0.0518
w � 0.0824 0.0081 0.0035

Neural CCA
w � 0.0264 0.0526
w � 0.0829 0.0098 0.0041

ECA network~ V �?� �� - � w � 0.0258 0.0515~ V �?� �� - � w � 0.0826 0.0076 0.0032

Table 3. Results for the dataset.

4.2. Comparison to other CCA networks

Different implementations of CCA neural networks currently
exist. Most of these networks have a more complicated
structure as a result of a constraint that ensures the output
variance is unity [2] [3]. The ECA network is derived with a
weight constraint in mind rather than constraints on the out-
puts, which results in a fast, simple and robust network. The

output constraint is achieved by sphering the data, which
causes the covariance matrix of the input data to be the iden-
tity matrix. Because the weight vectors will converge to an
orthonomal set, the output constraint will automatically be
satisfied.

5. CONTEXTUAL GUIDANCE IN EARLY VISION

Natural images contain a great deal of structure, for exam-
ple lines, surfaces edges and a variety of textures are present
in most images. The human brain appears to have learned
to code these structures efficiently. In an attempt to un-
derstand how our brains can achieve this we may adopt a
statistical approach. From this perspective we can try to
describe the relationship between neighbouring pixels. It
has been argued that although there is a strong second or-
der relationship between pixels, we cannot adequately cap-
ture the interesting structure that is necessary to analyse im-
ages efficiently by only considering second order statistics.
Therefore a compact coding such as the well-known princi-
pal components analysis does not suffice.

Many arguments have been put forward that imply a
more relevant code for natural images is a sparse coding [12],
i.e. a coding which produces outputs with high kurtosis.

5.1. The EPP algorithm and sparse coding

As the EPP algorithm searches for codes with high kurtosis,
it is suitable for coding natural images. Due to the large
scale nature of the experiments, the performance may be
improved by using a different form of weight constraint. In
the case of EPP the weight update rule is simplified to a
Hebbian update rule. � � �R� x

�
f � y �

and for ECA the weight update rules become:� � � �ZY[� g � y � ��L g N � y � �?� x � � \� " � �ZY[� g � y � ��L g N � y � �?� x �� \
As we have eliminated the weight constraints, the weights
can grow indefinitely and two weights can learn the same
feature. We ensure a bounded solution by using symmetric
decorrelation given by:� �.� � 9 ���T� � �.��� � �.��� � �EVB�� � �.���

Because the EPP and ECA networks require data to be
whitened we need to pre-process the images. First the data
is mean-centered and then it is filtered by a filter with fre-
quency response ���8�Z���m��� i�� �f�U�8�1�����!�]`g� . This is a widely
used whitening/low-pass filter that ensures the Fourier am-
plitude spectrum of the images is flattened. It also decreases
the effect of noise by eliminating the highest frequencies.
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Fig. 2. 10 converged weightvectors when training then EPP
network with natural images

(a) Top view (b) Bottom view

Fig. 3. Converged weightvectors for the contextual guid-
ance experiment on natural images

We carried out an experiment in which 9 natural images
were chosen and preprocessed with the method described in
section 5.1. We randomly sampled the pre-processed im-
ages by taking 12 by 12 pixel patches, which were used
as inputs to the network. Figure 2 shows a sample of 10
weightvectors, after the network was fully trained. These
results are similar to those obtained by other sparse coding
networks [12] and have been related to the receptive fields
of simple cells in the Striate cortex.

5.2. Contextual Guidance

The idea of contextual guidance in early visual processing
can be simulated using the ECA network. For this exper-
iment we chose 9 natural images, which we pre-processed
as decribed in section 5.1. As before, we extracted 12 by
12 patches from random positions from a set of 9 natural
images. The contextual information was added by taking
the patch directly below the chosen patch and using both
patches pair-wise as input to the ECA network. To facilitate
convergence, both patches overlapped 2 pixels. The result-
ing weight vectors are displayed in Figure 5.2.

5.3. Discussion

The ECA network has formed a joint sparse code between
two neighbouring patches. The weightvectors in Figure 5.2a
and Figure 5.2b have the typical local wavelet like structure
similar to those found in the one stream EPP experiment.
Furthermore, the codes from both streams resemble each

Fig. 4. Five pairs of matching converged weightvectors for
the contextual guidance experiment on natural images

other in orientation and size, but differ in position. This
indicates the network has formed both a sparse code, and a
code that is related between two input patches.

Another interesting observation is that most codes are
formed on opposite sides of each patch. This is expected to
occur at the sides where the two patches match and over-
lap slightly as the information shared between the inputs is
highest there. Indeed most patches have formed this way
but in the case of a few the opposite is true, which may be
attributed to the orthogonality constaint.

To clarify the relationship between the patches, a sample
of five pairs of converged weightvectors are show one over
the other in Figure 4.

5.4. Stereo Images

An experiment related to the forming codes between neigh-
bouring patches is the formation of common codes in stereo
images. Stereo images consist of two images: one part as
seen through the left eye and another as seen through the
right. As both images are different views of the same scene,
they share a number of features, which can be extracted with
the ECA network.

For this experiment we chose 9 natural pre-processed
stereo images. The images were sampled by randomly tak-
ing 12 by 12 patches, which were used pair-wise as input
to the ECA network. The resulting weight vectors of the
trained network are displayed in Figure 5.

5.5. Discussion of results

We have found a number of interesting differences between
the filters obtained from standard images and those obtained
from stereo images. The first difference is that there are sig-
nificantly less shared codes for stereo images. This can be
explained by the fact that stereo images are not only views
of a scene at slightly different angles, but the two images are
also shifted. This makes the ’overlap’ between two patches
smaller and the amount of shared information less. For two
input streams of both 12 by 12 pixels, we extracted 49 com-
ponents, which was experimentally determined to be the op-
timal number. Another difference is that the features found
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(a) Left view (b) Right view

Fig. 5. Converged weightvectors when training the ECA
network with stereo images

by the ECA network tend to have a wider variety of fre-
quencies. Additionally, the features themselves tend to be
larger.

When comparing the codes from both data streams, we
can see many similarities in the codes, but there are also
a number of interesting differences. A number of features
are inverted versions of each other. This is a result of the
positive only kurtotic objective function g � y �U� y ` . Also,
a number of features are shifted, which can be attributed to
the stereo disparity between the left and the right images.

Stereo images have been analysed before using sparse
coding methods [13]. Usually, two patches from each image
are taken and both patches are used simultaneously as input
to the sparse coder. Our method differs from these, as ECA
allows codes to form for each input stream independently,
which are related through activations of the outputs.

6. CONCLUSION

We have presented a neural network based algorithm, ECA,
which may be used to form a sparse coding of natural image
samples across multiple data streams. The learned features
represent a joint coding of the common underlying statisti-
cal features across the data streams. Because these features
are shared between image streams, they are fewer in number
and tend to be more complex in nature. In the future we in-
tend to explore other algorithms within this framework and
their application to image coding. The application of the
network to areas of remote sensing may prove fruitful.
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