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ABSTRACT

The classical ICA model assumes that observations are all
linear combinations of statistically independent scalar sources.
This, as well as prior assumptions on the number of sources
and their distributions are often seen as the weakest aspects
of the ICA source model. In this paper, we present the
mathematical structure necessary for extending ICA to more
flexible models of real-world data.

1. INTRODUCTION

Applications of ICA to real-world data such as MRI data
have often noted that while their algorithms find some scalar
components that are visually and intuitively independent,
the remaining components are not as well separated. From
a generating model perspective, starting from linear trans-
formations of statistically independent scalar sources, sub-
sequent non-linear transformations or projection transfor-
mations will almost surely result in subspaces with dimen-
sionality greater than one which cannot be linearly sepa-
rated by ICA. The notion of higher dimensional “vector”
sources were introduced by Cardoso and Lin, and was also
addressed by Hyvarinan et. al. [1-3]. The information
geometry of stochastic interaction decompositions was pre-
sented in Amari [4].

From a source modeling perspective, we seek to address
the basic question of whether or not sources are fundamen-
tal. Can the same observations be generated by different
sets of sources? More generally, can a joint probability den-
sity function be equally well described by different sets of
conditional independencies? Or is there a optimal source-
interaction structure?

In the field of Graphical models and probabilistic net-
works, causal relationships between random variables are
inferred through the conditional independence structure in
their joint probability density function. This structure is
represented as an undirected graph over a set of nodes map-
ping to the random variables, and is manifested in the de-

composition of the joint density into a product of lower di-
mensional functions. In this paper we explicitly focus on
the decomposition of multivariate functions into a product
of lower dimensional functions in a lattice theoretic frame-
work (see e.g. Stanley [5]; Birkhoff [6]). In a probabilistic
setting, conditional independence is found to be insufficient
for fully describing the decomposition. Characterizations
of higher order interactions between the random variables
beyond conditional independence is discussed. We gen-
eralize some decomposition results for categorical random
variables (see e.g. Cowell, Dawid, Lauritzen and Spiegel-
halter [7]; Bishop, Fienberg and Holland [8]) to continuous
random variables, and explicitly describe the basic build-
ing blocks (meet irreducibles) of the decomposition struc-
ture. Intuitively appealing results are presented for logically
combining models based on the interactions present in both
models, thereby proving that there is an optimal interaction
model for continuous random variables in a fixed coordinate
frame. We conclude with extensions to affine transforma-
tions of continuous random variables, and its implications
for sources modeling.

An outline of this paper is as follows. Section two de-
fines the antichain structure of the decompositions being in-
vestigated. Sections three and four describe a lattice of an-
tichains and derives the meet irreducible decomposition of
an antichain. These sections can be skimmed on first read-
ing. Much of the motivation and intuition behind the de-
scribed decomposition is captured in Figure 1. The main
functional decomposition results are contained in section
five. An information propagation interpretation of func-
tional decomposition is presented in section six, along with
some examples and extensions to affine transformations.

2. DECOMPOSITIONS OF INTEREST

Let
���������
	�� � � 	�����

be a set of � variables, and let � �
�
���
	�� � � 	������

,
�������

, be a set of subsets of
�

. In shorthand
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notation, we denote a function of the variables as��� ��� 	�� � � 	����� ����� ��� �
From a probabilistic perspective, we are interested in de-
compositions of the joint probability density function into a
product of functions of subsets of the variables. For simplic-
ity, we will consider additive decompositions of the form

��� ��� � ��
� � �
	 ��� ����� 	

for some functions of subsets 	 ��� ����� . Thus, in a probabilis-
tic setting, this would correspond to an additive decomposi-
tion of the log–likelihood function.

In general, the functions 	 � are not unique. Further-
more, if

��� � ��
, we can simplify the decomposition by

subsuming 	 ��� ��� )and 	 �� ���� into one function:�	 �� ���� � 	 ��� ������� 	 �� ���� �
We therefore restrict ourselves to a set of subsets � � �
����	�� � � 	���� �

,
where

������ ��
if � ����

. In a lattice theoretic description,
� is an antichain in the lattice of subsets of

�
ordered by

inclusion, often denoted � � (Stanley 1986, Birkhoff 1967).

3. LATTICE OF ANTICHAINS

Recall that a lattice consists of a set endowed with a greatest
lower bound (meet) and least upper bound (join) for any pair
of elements. In order to be able to combine different ways of
decomposing functions, we need to define a proper lattice of
antichains. This lattice is isomorphic to the lattice of order
ideals of � � , where the mapping simply takes an antichain
to the order ideal generated by the elements of the antichain.

For completeness, we will define the lattice of antichains
explicitly. Again, let

� � ��� �
	�� � � 	�����
be a set of � ele-

ments.

Definition 3.1 Given � � �
� ��	���� 	�� � � ��� �
, and � � � ����	!�"� 	�� � � �"# �

,���	!� � � � , two sets of subsets of
�

. Let $ �&% and ' �&( be,
respectively, the antichains consisting of the set of maximal
and minimal elements of � ordered by inclusion. Denote

�*)+� � �
���
	���� 	�� � � 	���� 	!���
	!�"� 	�� � � 	!�"# �
�*, -.� � �
���0/1��32 ���54 � 	!��34 � �

Definition 3.2 Let � , and � be two antichains in � � , the
lattice of subsets of

�
. Define the meet 6 and join 7 of two

antichains as follows:

�871� � $ �*)9�3%
�86:� � $ �*, -.�3% �

{x,y}{y,z}{x,z}{x,y}

{x,y,z}

{y,z}{x,z}

{x,y}{x,z}{y,z}

{y}{z}

O

{x}{y}{x}{z} {z}{y}

{x,z} {y,z} {x,y}

{y,z}{x}

{x}

{x}{y}{z}

{x,y}{z}{x,z}{y}

Fig. 1. Lattice of antichains in �<; . The elements labeled in
darker text correspond to the meet irreducibles of the lattice.
Notice that all elements in the lattice can be decomposed
into the meet of meet irreducibles.

It is readily verified that The set of antichains of � � to-
gether with the given defined meet and join operations de-
fine a lattice. Recall that the definitions of the meet and
join define a partial ordering of the antichains by setting
��=>� if and only if �?6@� � � . The lattice of antichains
in the lattice of subsets of three elements �<; is shown in Fig-
ure A . Each element in the lattice of antichains corresponds
to a class of functions of three variables which admit a spe-
cific “dependency” decomposition. Our goal is to be able to
combine different classes using lattice meets and joins.

4. MEET IRREDUCIBLES OF THE ANTICHAIN
LATTICE

Definition 4.1 Given an antichain � , let B � � � � ' �DC �
�>2�CE�� �����GF�H � �JI ���&4 � � ( be the antichain consisting
of the set of minimal elements of the set of all elements in
the lattice � � that are not less than or equal to an element
in the antichain � .

In other words, B � � �
is constructed by first taking all ele-

ments in � � that are above the antichain � , and then taking
the set of minimal elements.

Lemma 4.2 Given antichains � � �
� �
	�� � � 	������
and � �

� ���
	�� � � 	!�LK �
, Suppose �M= � , then for any

� �
, there exists

an element
�NKO4 � such that

� � � �NK
.

Proof. Since � is an antichain,
� �P�� ��

for any
�8�� � . So��&/ �NKQ��R� �

for all
�S�� � . So

� �
must be contained in

��K
,� � � �NK

for some T .
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Lemma 4.3 Given an antichain � , and an element
C 4

B � � �
, any proper subset � ��C

must be contained in some���54 � .

Proof. Any proper subset � of an element
C 4 B � � �

must
be contained in some

� �P4 � , otherwise, since � � C
,
C

cannot be an element of the antichain B � � �
.

Lemma 4.4 Given antichain � , and an element
C 4 B � � �

,
�*7 C

covers � , �*7 C�� � . That is, �*7 C
is immediately

above � .

Proof. Let � � �
���
	�� � � 	������
, and without loss of generality,

suppose ��7 C�� �
����	�� � � 	��NK�	�C �
, where T =�� . So

CM��
���
	�� � � 	��NK

,
��� 	�� � � 	��NKS�� C

, and
���
	�� � � 	��NK � C

– they have
to be proper subset of

C
since

C 4 B � � �
. The special case

where ��7 C�� C
also follows from this proof. Suppose

there exists an antichain � such that � =�� = � 7 C
.

From lemma, there exists an element � � 4 � such that
��� �

� � . (without loss of generality, relabel the elements of � )
Since ��� �>7 C

, applying the lemma again, there must
be an element 	 4 ��7 C

such that � � � 	 . Combining,��� � � � � 	 , and since
� � �� C

, 	 can only be
� �

. Thus� � � ���
. Proceeding in the same way, we must require� � � ��� 	�� � � 	 � K � �NK

. Continuing, there must be an element
of � K�
 �84 � such that

�NK�
 � � � K�
 � On the other side,� K�
 � ��
for some element

� 4 � 7 C
. The only possibility

is
� �>C

, resulting in the relation
��K�
 � � � K�
 � � C

. Thus
� must contain all the elements

� �
	�� � � 	��NK
. Any subsequent

elements in � must be contained in
C

. There are two cases
at this point.

Case 1 � K�
 � �.C
.

Suppose there exists another element � K�

�34 � . Since
all the elements of �S7 C

already appear in � , this is
impossible since � is an antichain. So � can only
have T � A elements, and � � �87 C

in this case.

Case 2 � K�
 � �?C
.

If � K�
 � is a proper subset of
C

, by lemma � � � , � K�
 � �
� for some � 4 � . Since � K�
 � already contains

��K�
 �
,

and � is an antichain, we must have � � ��K�
 �
, and

consequently, � K�
 � � �NK�
 �
. Continuing, there must

be an element � K�

� 4 � such that
�NK�

� � � K�

� �C

(must be
C

, C already contains
� �
	�� � � 	��NK

). Since� K�
 � ��C
, � K�

� cannot be equal to

C
, so � K�

� ��C

.
Again, applying lemma � � � , � K�

� � �NK�

�

. Proceed-
ing, � K�
 ; � �NK�
 ; 	�� � � 	 � � � ���

. So all the elements of
the antichain � are in the antichain � . Now, there
cannot be an element � � 
 � 4 � . This is seen as
follows. First, we must have � � 
 � � C

. Second,� � 
 � �� C
since

�NK�
 � 	�� � � 	���� �>C
. So � � 
 � must be a

proper subset of
C

. By Lemma � � � � � 
 � must be con-
tained in an element in � , which is impossible since
� is an antichain. Thus, there cannot be more than �
elements in � , and we have � � � in this case.

This proves that there are no antichains between � and
�87 C

.

Lemma 4.5 Given 	 4 B � � �
. If � 4 B � � ��� 	 , then

� 4 B � �?7 	 � .
Proof. We prove this by contradiction. Assume there exists
an element � 4 B � � ��� 	 with � �4 B � � 7 	 � . Since
� 4 B � � ��� 	 , � �� ���

for all
���<4 � . Since 	 4 B � � �

,
and B � � �

is an antichain, � �� 	 . Therefore � �� C
for allC 48� � 7 	 � . Since � �4 B � �?7 	 � , there must be a subset� � � such that � 4 B � ��7 	 � . This means that � is not

contained in any element of ��7 	 � $ � �
	�� � � 	���� 	 	 % . The
elements of

�
���
	�� � � 	������
which are not in the antichain �:7 	

are contained in 	 , and since � �� 	 , � �� � �
for all

���54 � .
But since � 4 B � � �

, we cannot have a subset � � � which
is not contained in all the elements of � . This is the desired
contradiction. The result of the lemma follows.

Lemma 4.6 Given 	 4 B � � �
. If � 4 B � � 7 	 � , then � 4� B � � ��� � ��� � ��� � � ��� �  , where 	 � � � for all � � .

Proof. Given � 4 B � �?7 	 � , this means, � �� � �
	�� � � 	��NK�	 	 ,
with

�NK�
 �
	�� � � 	���� � 	 . This implies that � �� ��K�
 � 	�� � � 	����
,

and hence there must exist a subset � � � such that � 4
B � � �

. Recall, 	 4 B � � �
also. Now we have two cases:

Case 1 � � 	 . So 	 � � . Since � �� 	 , this implies that

	 � � .

Case 2 � �� 	 , so � �� 	 . But since � � � , and � 4
B � ��7 	 � , we must have � � � , and so � 4 B � � �

.
Since � �� 	 , we must have � 4 B � � ��� 	 .

This proves our desired lemma.
These two lemmas establish that B � � 7 C �

contains all
the elements of B � � ���?C

, and the only other elements it
contains must be proper supersets of

C
.

Definition 4.7 We will use the following notation. GivenC�4 B � � �
, with

C � �DC �
	�� � � 	�C  �
. Let

�C���� ��� C � 	 ���C&� 	�� � � 	 ��� C  �
. Let � � � � � � �C! C 4 B � � � �

. We will prove
below that the elements of � � � �

are the meet irreducibles of
the antichain � .

From the previous two lemmas, we have � � �37 C � � � � � �"��C � � ��  � , where
��  6 C � C

.

Lemma 4.8 Given
C 4 B � � �

, with
C � �DC �
	�� � � 	�C  �

, � =�C
.

Proof. For any
� � 4 � ,

C �� ���
, thus there exists an el-

ement
C K?4 C

such that
C K>�4 ���

. Thus
��� � �#�.C K

.
Consequently, �86 �C � � , so � = �C

.

Lemma 4.9
� �87 C � 6 �C � � .
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Proof. First we have
� � 7 C � 6 �C = � 7 C

. Second,
no element in the antichain

�C
can contain all of

C
, so no

element in
� ��7 C � 6 �C

can contain all of
C

. Since
C 4

�17 C
, so

� �17 C � 6 �C �� �17 C
, thus

� �17 C � 6 �C � �17 C
.

Finally, since
�C�� � (from previous lemma), and �S7 C��

� (it actually covers � ), thus
� � 7 C � 6 �C�� � Combining,

and using the result from lemma � � � that ��7 C � � , we
necessarily have

� �87 C � 6 �C � � .

Theorem 4.10 Given an antichain � , � ��� � � � �
for all

� �� �
.

Proof. Let � � �
� ��� � �
	 � ��� �  � �� � � � � � �
, let � �

$�� % , that is, the set of maximal elements in � , which is an
antichain in the lattice of antichains. Let � 4 � . First, ifB � � � ��

, then there do not exist any elements in the lattice� � above the antichain � . This implies that � � �
.

Since we are not allowing � to be the full set
�

, B � � �
cannot be the empty set, so there exists an element

C 4
B � � �

. Consider the antichain � 7 C
. Since � 4 � , we

must have �87 C ��� � � �87 C �
.

By the lemmas � � � , � � � and � � � , we have

� � � �87 C � 6 �C
� ��� � � �?7 C ��� 6 �C
� ��� � � � ��� �C<���  ��  6 �C
� ��� � � � ��� �C<� 6 �C
��� � � � � �

This is the desired contradiction since � 4 � , and �
cannot be equal to

� � � � �
. The result of the theorem fol-

lows. It is easy to see that elements of � � � �
are meet ir-

reducibles in the lattice of antichains, thus � ��� � � � �
is

the decomposition of any antichain into the meet of meet
irreducibles.

5. FUNCTIONAL DECOMPOSITION

Here we present our main results on functional decomposi-
tion. For

� � �����
	�� � � 	�����
, we will use the shorthand no-

tation
��� ��� � ��� ���
	�� � � 	���0�

. Given a specific point �� ������� 	�� � � 	�����0�
, let

��� �  ��� � � ��� ��� ������
	� � 	�� � � 	���0�
, and

more generally for
C � �

,
��� �  C �

to be the function
�

,
with the variables in

C
fixed to the corresponding values in

the vector �� .

Definition 5.1 Given an antichain � � �
� ��	�� � � 	���� �
, let

� � � � � 2"! �$# !  ���� ��� � ��
� � �
	 ��� ����� ��	

where 	 ��� ����� can be any function of the subset of variables���
. We will say that the function

�
admits a decomposition

according to antichain � .

Theorem 5.2 If
� 4 ���

, and � = � , then
� 4 ��%

.

Proof. Using the fact that
�>4 ��&

, we can write
��� ��� �' � 	 ��� ����� . Since �+= � , for every

� � 4 � , there is an
element

�� 4 � , such that
��� � ��

. Now, by including the
functions of the smaller subsets into a single function when
needed

� ������� � �
(*)�+�,�-*. (*)0/+�,2103 4 4 4 3 ,�-2561 	

��� ����� 	

we explicitly construct a functional decomposition of
��� ���

in accordance with the antichain � .

Theorem 5.3 If either
� 4 ���

or
� 4 � 7

, then
� 4 � �986%

.

Proof. This follows from the previous theorem. An alterna-
tive version of this theorem is: Given

�Q4 ���
and � 4 � 7

,
then a linear superposition

�N���8� � 4 ���986%
.

Theorem 5.4 If
� 4 ���

and
� 4 � 7

, then
� 4 � �9:6%

.

First we need a lemma.

Lemma 5.5 Given
� 4 ���

and
C 4 B � � �

,

� � A �<; =>; ��� �  C ��� � � A �<; =>; ? � �
,@+ = 3 ; , ; � �

��� �  C � �L��� � � � �<��� ��� �BA��

Or, more compactly

; =>;�
� ��C � � A �

� �
,@+ = 3 ; , ; � �

��� �  C � �L� �DA��
(1)

Proof. Since �+= �C
, from Theorem

� � E
,
� 4 �GF= . This

means we can write

��� ��� � ; =>;�
� � �
	 ��� � �*C���� 	

for some functions 	 ��� � �1C����
. Using this expansion for all

the terms in Eqn. A , we see that every term 	 ��� � �OC��  C ���L�
with

C�� �� �
from

��� �  C� �L�
is paired with another identi-

cal term 	 ��� � � C��  C �8� �SC����
of the opposite sign from��� �  C � � �>C����

. Thus all the terms sum to zero. This
equation states that the sum of the function, evaluated with
alternating signs at all the vertices of the

 C! 
–hypercube de-

fined by the opposing vertices � and �� is equal to zero.
This lemma essentially describes how information prop-

agates along the joint probability density function, and gen-
eralizes the equation H � � 	 I � � H � �G� H � I � when I and J are
independent random variables.
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Proof. We are now ready to prove our main theorem.
For every element in B � � �

and B � � �
, there is an expan-

sion of
��� ���

in terms of the function itself evaluated at all
the remaining vertices of a hypercube. Combining all the
expansions of

��� ���
from B � � �

and B � � �
, and using our

theorem that � ��� � � � �
for all � 4�� 	 � �� �

, we obtain
explicitly the desired expansion of

��� ���
.

Finally, as a simple corollary to Theorem
� � � , we have the

following important result.

Corollary 5.6 Let

�+���J� � �
� ��� � �
	 � ��� �  �� 4 � � ��	
be the set of antichains for which the function

�
admits the

corresponding decomposition. From the theorem, given any
two antichain decompositions of a function

�
, we can de-

compose
�

according to the (more compact) meet of the two
antichains. Thus,

�+���J� � �
� ��� � �
	 � ��� �  � � � C � is a
principal filter, in other words, it consists of all antichains
greater than or equal to a single antichain � C . So we’ve
proven the nice result that there is an optimal decomposi-
tion

� ���
of any function

�
.

6. INFORMATION PROPAGATION

As stated before, lemma
� � �

has a nice interpretation in
terms of information propagation along the joint p.d.f. We
present an example which elucidates the nature of higher or-
der causal relations beyond conditional independence. Con-
sider functions of three variables. Let � � � I 	���� ��� 	���� ��� 	 I � .
We do not need to decompose the antichain � into the meet
of meet irreducibles since � is already meet irreducible.
In particular, B � � � � ��� 	 I 	���� , and with

C � ��� 	 I 	���� ,
Lemma

� � �
states that

; =>;�
� ��C � � A �

� �
,@+ = 3 ; , ; � �

��� �  C � �L� �BA��

Expanding out the equation, we have��� ��C�	 I C 	�� C��� ��� � 	 I C 	�� C���� ��� ��C 	 I 	�� C�� � ��� ��C�	 I C 	����� ��� ��C�	 I 	����J�8��� � 	 I C 	����
�8��� � 	 I 	�� C��� ��� � 	 I 	����� A�	
A geometric visualization of this information propagation
equation is shown in Figure 2, where signs reflect respective
weightings of the function evaluated at the vertices.

More generally, if the meet irreducible corresponds to
a subset

C � �
with � elements, the lemma defines an

information propagation scheme along the vertices of an

+

-

--

+

+ +

- (x,y,z)

(x,y,z)
0 0 0

Fig. 2. Three dimensional information propagation along
the vertices of a cube.

� � 	 I H � H �	� � � . Thus, in a probabilistic setting, the meet ir-
reducibles in the lattice of antichains have an intuitive prob-
abilistic interpretation. The set of meet irreducibles with
corresponding

 C! � A correspond to variables for which
there is no dependence. The set of meet irreducibles with
corresponding

 C! � E
lists the conditional independence

structure contained in the joint probability density function,
and higher order causal structure are reflected in the meet
irreducibles with corresponding

 C! �DE
.

Returning to our example, a function
� 4 � �

, admits
the decomposition

��� � 	 I 	���� � 	 ��� I 	������ 	 ��� � 	������ 	 ; � � 	 I � �
In a probabilistic setting, the corresponding product decom-
position is

H � � 	 I 	���� � � � H�
 ��� � 	 I 	������� H � � I 	���� H � � � 	���� H ; � � 	 I � �
This decomposition is the simplest example of a causal rela-
tionship which cannot be described by conditional indepen-
dence. An example of a joint probability density function
which has this higher order causal structure is the following
multivariate normal distribution

H � � 	 I 	������ � � H�
 �P� I ����� � � � � ����� � � � ��� I � � ���
The ICA reader will immediately suggest a coordinate trans-
formation which will result in an independent source de-
scription of the random vector. This again brings up our
original motivating question - how fundamental and unique
are the sources? Sources are defined through statistical in-
dependence, and statistical independence is shown to con-
sist of pairwise conditional independencies. We have al-
ready fully investigated how sets of generalized conditional
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Fig. 3. Combining conditional independence decomposi-
tions along two pairs of directions in the same plane.

independences can be combined to yield the most optimal
functional decomposition in a fixed coordinate system. Now
the challenge is to be able to combine generalized condi-
tional independencies in various linearly related coordinate
systems.

The covariant aspect of the information propagation hy-
percubes means that when linearly transformed, the infor-
mation will simply propagate along oblique hypercubes. In
Figure

�
, we geometrically combine conditional indendence

structures in two dimensions along two linear coordinate
systems, with a non-singular transformation relating the two.
Without loss of generality, one coordinate system is taken to
be the orthogonal coordinate system. As seen in the fig-
ure, by proper alignment of the information propagation
oblique and orthogonal quadrilaterals summed with alter-
nating signs along the vertices, the coefficients of many ver-
tices can be made to cancel. The combination of the two in-
formation propagation schemes results in the following one-
dimensional information propatation equation (finite differ-
ence equation)

��� � 	 I � � ����� � � ��	 I �N� ����� � � E ��	 I � �@��� � � � ��	 I � �BA�	
for any

� 	 I and scale
�
. Thus,

��� � 	 I � has to be quadratic
in
�

. Similar geometric construction and reasoning forces��� � 	 I � to be quadratic in I as well. Since
��� � 	 I � is the log-

likelihood function, normalization considerations force us
to conclude that H � � 	 I � � � � H ����� � 	 I ��� is bivariate Gaus-
sian. Thus we have a geometric proof of that if I 	 J are
independent, and

� I � � J 	 � I � 	 J are also independent,
with

� 	 �>� � �� A
, then both I and J are normally dis-

tributed. (see e.g. Linnik and Ostrovskii [9])

7. DISCUSSION

The generalization of functional decomposition from the
graphical description used in the graphical modeling com-
munity to a lattice description described in this paper is a
natural and powerful one. Causal relationships between the
random variables are described by an antichain structure,
and are manifested in a set of ways information propagates
for the joint probability density function. These correspond
to basic building blocks (meet irreducibles) of the decom-
position of the joint p.d.f. The final theorem and associated
corollary contain the main results of this paper. It answers
the question posed in an earlier work regarding uniqueness
and optimality of “factorizations” of multivariate functions
in a fixed coordinate system.

Affine transformations significantly complicates the is-
sue since sources and interactions are effectively coupled.
However, the linearly transformed information propagation
structures will still be basic building blocks of the decom-
position. A challenge to the ICA community will be to dis-
cover these generalized conditional independence structures
from data, and to combine them into a source–interaction
description of the data. We presented a geometric proof
that two distinct conditional independence direction pairs
in the same plane forces the density to be bivariate nor-
mal in those variables, however, the existence of an optimal
source–interaction description remains an open question.
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