
ON SOME EXTENSIONS OF THE NATURAL GRADIENT ALGORITHM

Pando Georgieva, Andrzej Cichockib and Shun-ichi Amaric

Brain Science Institute, RIKEN, Wako-shi, Saitama 351-01, Japan
a On leave from the Sofia University ”St. Kl. Ohridski”, Bulgaria

E-mail: georgiev@bsp.brain.riken.go.jp
b On leave from the Warsaw University of Technology, Poland

E-mail: cia@bsp.brain.riken.go.jp
c E-mail: amari@bsp.brain.riken.go.jp

ABSTRACT

Recently several novel gradient descent approaches like nat-
ural or relative gradient methods have been proposed to de-
rive rigorously various powerful ICA algorithms. In this pa-
per we propose some extensions of Amari’s Natural Gradi-
ent and Atick-Redlich formulas. They allow us to derive rig-
orously some already known algorithms, like for example,
robust ICA algorithm and local algorithm for blind decorre-
lation. Furthermore, we hope they enable us to generate the
family of new algorithms with improved convergence speed
or performance for various applications. We present con-
ditions for which the proposed general gradient descent dy-
namical systems are stable. We show that the nonholonomic
orthogonal algorithm can not be derived from minimization
of any cost function. We propose a stabilized nonholonomic
algorithm, which preserves the norm of the demixing ma-
trix.

1. INTRODUCTION

Gradient techniques are established and well known meth-
ods for adjusting a set of parameters to minimize or maxi-
mize a chosen cost function. However, simple standard gra-
dient descent techniques can be rather slow and the system
can stuck in local minima. Recently, in order to improve
convergence speed for matrix algorithms, several novel gra-
dient systems has been proposed and their dynamic proper-
ties have been investigated (see [1-11]).

In 1995, Amari (see [1-5]) introduced natural gradient
approach which can be written in compact form as:

dW
dt

= −µ
∂J

∂W
WT W, (1)

whereJ is a suitable nonnegative cost function. Indepen-
dently Cardoso [7] introduced the relative gradient which is
equivalent to natural gradient formula.

In 1993, Atick and Redlich introduced the following
gradient formula [6]:

dW
dt

= −µW
[

∂J

∂W

]T

W (2)

whereW ∈ IRn×n andJ(W,y) is suitable chosen cost
function.

The main objective of the paper is to investigate the ba-
sic dynamic properties of these gradient systems and to pro-
pose some extension and generalization which can be use-
ful in deriving some ICA algorithms. We consider specific
dynamical system and prove that some algorithms in ICA
can be obtained by adjusting the parameters of this dynami-
cal system. We give conditions under which this dynamical
system possesses Lyapunov function, which proves rigor-
ously the convergence of some algorithms.

2. CONVERGENCE PROOF VIA
NONHOLONOMIC BASIS

In this section we shall demonstrate that the nonholonomic
basisdX can be used for proving convergence of the natural
gradient algorithm and the Atick-Redlich algorithm (under
some conditions). We refer to [4] for the properties of non-
holonomic basisdX.

Using nonholonomic basisdX = dWW−1, (1) and (2)
become respectively

dX
dt

= −µ
∂J

∂W
WT (3)

and
dX
dt

= −µW
[

∂J

∂W

]T

. (4)

PuttingH = ∂J
∂WWT we haveH = ∂J

∂X (consult with [?]
for a proof). By (3), we obtain

dJ(W(t))
dt

= −µ trace(HT H) (5)
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= −µ

n∑

i,j=1

H2
i,j ≤ 0,

as equality is achieved if and only if∂J
∂W = 0 (assuming

thatW is nonsingular).
Analogously, by (4) we obtain

dJ(W(t))
dt

= −µ trace(HH) (6)

= −µ

n∑

i,j=1

Hi,jHj,i .

The equation (5) shows thatJ is a Lyapunov function of (1)
(in wide sense).

The trace in (6) is not always positive. Let us decompose
H as

H = S + A,

whereS is symmetric andA is antisymmetric. Then we
have

trace(HH) =
n∑

i,j=1

Hi,jHj,i (7)

=
n∑

i,j=1

S2
i,j −

n∑

i,j=1

A2
i,j

= ‖S‖2 − ‖A‖2.

This gives a sufficient condition for convergence of Atick-
Redlich algorithm, that is,‖S‖ > ‖A‖ for anyW (the ma-
tricesH andS,A depend onW).

We note that, using this approach, it is possible to give
another proof of Theorem 1 below.

3. EXTENSION OF THE NATURAL GRADIENT
ALGORITHM AND ATICK-REDLICH FORMULA

In the following theorem we describe a general dynamical
system defined by a matrix function.

Theorem 1 Consider a dynamical system, described by the
following differential equation

dW
dt

= −η
(∂J(W)

∂W

)
F (W)T F (W), (8)

whereW ∈ IRn×n is a square matrix (depending ont),
J : IRn×n → IR is differentiable function with matrix argu-
ment, bounded below,F : IRn×n → IRn×n is an arbitrary
matrix-valued function with matrix arguments and nonsin-
gular values, andη ∈ IRn×n is a symmetric positively defi-
nite matrix (possibly depending ont). ThenJ is a Lyapunov
function (in wide sense) for the dynamical system (8).

Proof. Denote bywij , fij , ηij andbij , i, j = 1, ..., n,
the elements of the matricesW, F (W), η and B =(

∂J(W)
∂W

)
F (W)T respectively. We calculate:

dJ(W(t))
dt

=
n∑

i,j=1

∂J

∂wij

dwij

dt

= −
n∑

i,j=1

∂J

wij

n∑

l,k=1

ηilblkfkj

= −
n∑

i,k=1

bik

n∑

l=1

ηilblk

= −
n∑

r=1

bT
r ηbr

≤ 0,

wherebr denotes ther-th vector-column ofB. It is easy
to see that zero is achieved if and only ifbr = 0 for every
r = 1, ..., n, i.e. whendW

dt = 0.
Here we present similar extension of Atick-Redlich for-

mula.

Theorem 2 Consider a dynamical system, described by the
following matrix differential equation

dW
dt

= −F (W)η
(∂J(W)

∂W

)T

F (W), (9)

whereJ : IRn×n → IR is a differentiable function with ma-
trix argumentF : IRn×n → IRn×n is an arbitrary matrix-
valued function with matrix arguments and nonsingular val-
ues, andη ∈ IRn×n is a symmetric positively definite ma-
trix (possibly depending ont). Assume that the function
L : IRn×n → IR is a solution of the following system of
differential equations:

(F (W))T ∂L(W)
∂W

=
(∂J(W)

∂W

)T

F (W).

ThenL is a Lyapunov function (in wide sense) for the dy-
namical system (9).

The proof is similar to that one of Theorem 1 and is
omitted.

We note that whenF (W)
(

∂J
∂W

)T

is symmetric andη

is scalar, then (9) is reduced to (8).
A sufficient condition of convergence of the trajectories

of (9), whenη is scalar, is similar as those for the original
Atick-Redlich formula and is proved analogously:‖S‖ >

‖A‖ for a decomposition of the matrixH := ∂J
∂W (F (W))T

asH = S + A, whereS is symmetric andA is antisym-
metric (for anyW).
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4. NONHOLONOMIC ALGORITHM IS NOT A
GRADIENT ALGORITHM

In this section we state that the nonholonomic orthogonal
algorithm [4] is not derived from minimization of any cost
function. The main observation for proving this fact is that
for a given diagonal matrixD (different from the identity
matrix) there is no functionϕ(W) such that

∂ϕ(W)
∂W

= DW−T .

This fact follows from the criterium for existence of poten-
tial functions (see [12], Theorem 3.4).

5. NORM PRESERVING ALGORITHMS

In this section we consider the following nonholonomic al-
gorithm, which stabilizes the norm of the matrixW to be
fixed:

dW
dt

= η(t)
(
F(y)− trace

(
F(y)WWT

)
I
)
W(t), (10)

whereF is activation function in sense of [2] andFii =
0, i = 1, ..., n. If the mixing matrix is orthogonal, then this
algorithms is equivariant, since it can be written in the form:

dG
dt

= η(t)
(
F(y)− trace

(
F(y)GGT

)
I
)
G(t),

whereG = WA.
It is easy to check that

dtrace(WT W)
dt

= (11)

= 2η(t)trace(F(y)WWT )(1− trace(WT W)).

So, if the initial matrixW(0) has unit norm, the norm
of W(t) is preserved to be one. This property helps to re-
cover the original signals, when their number is unknown
(but less than the number of sensors). An example is shown
in [4] for extraction of 4 signals from a linear mixture of
3 source signals; the usage of the standard natural algo-
rithm leads to growing of the norm of the demixing ma-
trix W to infinity; the usage of the nonholonomic algo-
rithms reduces this explosion to a fluctuation. In general,
stability of the norm ofW in the standard nonholonomic
algorithm is not proven, so the stabilizing form (10) can
be used. Something more, the stability conditions of the
standard nonholonomic algorithm [4] and (10) are the same
(whenFi,j = −fi(yi)yT

j , i 6= j, Fi,i = 0).

6. ILLUSTRATIVE EXAMPLES

6.1. Robust Extended ICA Algorithm

Let us illustrate the application of Theorem 1 for deriving
the class of robust algorithms for ICA [8], [9] with two non-
linear activation functionsf(y) andg(y) = D(y)y:

∆W(l) = η
[
I− 〈

f(y)gT (y)
〉]

W(l), (12)

whereD(y) is a diagonal matrix with positive entries,〈.〉 is
the expectation operator andyl(k) = y(k) = W(l)x(k).

It should be noted that the standard natural gradient leads
to the following equivariant ICA algorithm [1]-[4]

∆W(l) = η(l)
[
I− 〈

f(y)yT
〉]

W(l). (13)

For this purpose consider a special form of Theorem 1
for F (W) = D(y)1/2W:

∆W = −η
∂J(y,W)

∂W
WT D(y)W, (14)

whereJ(y,W) is suitably selected cost function. Theorem
1 ensures stable gradient descent search of a local minimum
of the cost function.

Let us consider, as example, the cost function

J(y,W) = − log | det(W)| −
n∑

i=1

log(pi(yi)). (15)

The gradient is:

∂J(y,W)
∂W

= −W−T + f̃(y)xT , (16)

where f̃(y) = [f̃1(y1), · · · , fn(yn)]T with fi(yi) =
−d log(p(yi)/dyi.

Applying formula (14) and taking average equation, we
obtain the known robust learning rule

∆W(l) = η̃
[
〈D〉 −

〈
f̃(y)gT (y)

〉]
W(l), (17)

whereη̃ = η〈D〉−1.
This can be written in the form (12) forf(y) = 〈D〉−1f̃(y).
Let us mention the special case, for symmetric pdf dis-

tributions of sources and odd activations functionsfi(yi)
and

D = diag{|y1|p, · · · , |yn|p}.
Whenp = −1 the algorithm simplifies to the median learn-
ing rule

∆W(l) = η̃
[
〈D〉 −

〈
f̃(y)[sign(y)]T

〉]
W(l), (18)

wheresign(y) = [sign(y1), · · · , sign(yn)]T . Simulation re-
sults show that such median learning rule with sign activa-
tion function is more robust to additive noise.
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6.2. Local Algorithm for Blind Decorrelation

If pi(y) = ey2/2 in (15) andD = I in (14), we obtain the
Local Algorithm for Blind Decorrelation:

dW
dt

= −µ
∂J

∂W
WT W = µ

(
I− 〈

yyT
〉)

W (19)

The same result is obtained, if we use Atick-Redlich for-
mula:

dW
dt

= −µW
[

∂J

∂W

]T

W = µ
(
I− 〈

yyT
〉)

W, (20)

since it reduces, in this case, to Amari’s natural gradient

formula, due to the fact thatW
[

∂J
∂W

]T
is symmetric.

The corresponding discrete-time on-line algorithm can
be written as:

W(k + 1) = W(k) + η
[
I− y(k)y(k)T

]
W(k). (21)

6.3. Derivation of simple local learning rule

The learning rule can be considerably simplified if we can
assume that the decorrelation matrixW is symmetrical one.
It is always possible to decorrelate vectorx by using a sym-
metric matrixW. To this end we can use a stable simple
gradient formula

dW
dt

= −µ
∂J

∂W
WT = µ

[
I− 〈

yyT
〉]

(22)

which is obtained by (8) forJ given in (15) withpi(y) =
ey2/2, puttingF (W) = W1/2, η = η0I, W(0) symmetric.

The above formula can be written in scalar form as

dwij

dt
= µ (δij − 〈yiyj〉) . (23)

The discrete time on line local learning algorithm can be
written as

W(k + 1) = W(k) + η(k)(I− y(k)yT (k)) (24)

or in scalar form as

wij(k + 1) = wij(k) + η(k) [δij − yi(k)yj(k)] . (25)

In addition to the merit that the algorithm (24) is much
simpler to implement than (21), the local signal require-
ments of the algorithm in (24) make it ideal for hardware
and VLSI implementations. However, the performances of
(21) and (24) are not the same, and convergence speed of
the local algorithm is usually much slower.

The update in (24) has an interesting property that it
converges also for a suitable sequence ofnegativestep sizes
η(k) [10]. To see this result, multiply both sides of (24) by

(−1). By definingW̃(k) = −W(k) andỹ(k) = −y(k) =
W̃(k)x(k) we obtain:

W̃(k + 1) = W̃(k)− η(k)(I− ỹ(k)ỹT (k)). (26)

This algorithm is equivalent to that in (24), and thus the co-
efficient matrixW̃(k) tends towards the solution obtained
by−W(k) in the original algorithm. Summarizing, the lo-
cal learning rule can be formulated in a more general form
as

W(k + 1) = W(k)± η(k)(I− 〈
y(k)yT (k)

〉
), (27)

whereη(k) > 0.

7. FURTHER GENERALIZATION

We propose the following generalization of the Natural Gra-
dient Algorithm

W(l + 1) = exp
{
− η

∂J

∂W

(
y(l),W(l)

)
W(l)T

}
W(l).

In the standard situation, whenJ is given by (15), we obtain

W(l + 1) = exp
{

η
[
I− f

(
y(l)

)
y(l)T

]}
W(l). (28)

If we develop the exponential term in infinite series

exp(F) =
∞∑

k=0

1
k!

Fk,

whereF = η[I− f(y)yT ], and neglect nonlinear terms, we
obtain the standard natural gradient algorithm.

An open question is a comparison of various matrix al-
gorithms, obtained by replacing exponential function in (28)
with other functions, for example1− tanh.

8. CONCLUSION

We present a general matrix dynamical systems and prove
convergence of the continuous trajectories of a generaliza-
tion of Amari’s natural gradient algorithm for ICA and Atick-
Redlich’s algorithm (under some conditions). A nonholo-
nomic basis is used to prove in another way the convergence
of the above algorithms. The nonholonomic algorithm can
not be derived from a minimization of a cost function. We
propose norm stabilizing nonholonomic algorithm. As il-
lustrative examples, the convergence of some decorrelation
algorithms are proven. We emphasize, that the matrixη ap-
pearing in (8) is subject of further investigations in order
to obtain fast convergence (like in Newton or quasi-Newton
methods for scalar algorithms) but hereη ∈ IRn×n (not
η ∈ IRn2×n2

after vectorizing the matrix variables).
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