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ABSTRACT

When applying unsupervised learning techniques like ICA
or temporal decorrelation for BSS, a key question is whether
the discovered projections are reliable. In other words: can
we give error bars or can we assess the quality of our sep-
aration? We use resampling methods to tackle these ques-
tions and show experimentally that our proposed variance
estimations are strongly correlated to the separation error.
We demonstrate that this reliability estimation can be used
to choose an appropriate ICA-model, to enhance signifi-
cantly the separation performance, and, most important, to
mark the components that can really have a physical mean-
ing. An application to data from an MEG1-experiment un-
derlines the usefulness of our approach.

1. INTRODUCTION

Blind source separation (BSS) techniques have found wide-
spread use in various application domains, e. g. acoustics,
telecommunication or biomedical signal processing. [1, 2,
3, 4, 5, 6, 7, 8]). BSS is a statistical technique to reveal �
unknown source signals 	�
����� when only mixtures of them
can be observed. For a linear mixture model, each of the��� � observed signals �������� is assumed to be generated
by

����������
��

����

 � 
!	�
������"

In the following we will work in the framework of Indepen-
dent Component Analysis (ICA), that means, we assume the
source signals 	�
����� to be statistically independent.

This is a typical unsupervised learning problem, since
there exists no further knowledge about the source signals
or the mixing matrix. Unfortunately, all unsupervised tech-
niques suffer from the same fundamental dilemma: When
applied to an arbitrary data set, they will always come up
with some answer that is found within their model class, re-
gardless of the applicability of the used model to this data.

#
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In the ICA-case, for example, the chosen algorithm will give
an estimate for the mixing matrix (or the sources 	$
����� ) even
if the observed data contains no structure at all (e.g. if all
���%���� are Gaussian and iid in time); of course, the estimated
projections are arbitrary in this case and totally useless.

One of the main questions of all unsupervised learning
scenarios is therefore whether the result of the algorithm
is reliable and displays inherent properties of the data or
whether it is just a random result without meaning.

In this paper, we first show in general, how a reliabil-
ity estimation for unsupervised learning algorithms can be
carried out by resampling methods (section 2). Once we
are able to estimate the reliability of a solution, we can
use this information for model selection purposes as well
as to improve the used algorithm. In section 3 we apply
the proposed resampling techniques to ICA. We show how
these techniques enable us to select a good ICA-algorithm,
to improve the separation performance and to find poten-
tially meaningful projection directions. We will give an al-
gorithmic description of the resampling methods and show
excellent experimental results. We conclude with a brief
discussion.

2. RESAMPLING TECHNIQUES FOR
UNSUPERVISED LEARNING

2.1. The Resampling Idea

In the typical unsupervised learning scenario we are given
data &'�(�!)���*+)$" " " , and we try to learn a set of parameters
&'-.�/)�-!*+)$" " " , . Each of the parameters then is a function of
the given data set: -+�0�1-!�����(�!)���*+)$" " " � .

The objective of resampling techniques is to produce
surrogate data sets from the original data that eventually
allow to approximate the variance of each parameter by a
repeated learning of the parameter2. We will denote the re-
sampling variance by 243�56��-67� � .

2In fact, to calculate the variance, we have to define a pairwise distance
in the parameter space; the variance estimate is then given by the mean
squared distance between the true solution and its replicas
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2.2. The Resampling Recipe

The most popular resampling methods are the Jackknife and
the Bootstrap (see e.g. [9]). The Jackknife produces sur-
rogate data sets by just deleting one item each time from
the original data set. There are generalizations of this ap-
proach like cross-validation which can delete more than one
item each time. A more general approach is the Bootstrap.
Consider a block of, say, N data points. For obtaining one
bootstrap sample, we draw randomly N elements from the
original data i.e. some data points might occur several times
while others don’t occur at all in the bootstrap sample.

These resampling methods have some desirable proper-
ties, which make them very attractive; for example, it can
be shown that for the iid case the bootstrap estimators of the
distributions of many commonly used statistics are consis-
tent [9]. This means that it is possible to get an absolute,
unbiased estimator for the true variance of a learned param-
eter. We will therefore call this an absolute estimator.

However, we need another estimator, to decide whether
the result of our learning algorithm displays inherent struc-
ture of the data set or whether it could be explained as a
random result. To get such an estimator, we define a null hy-
pothesis (e.g. � � ”The data contains no structure.”). The
exact form of � depends on the learning scenario. Once �
is defined, it is straightforward to obtain a conditional prob-
ability � � 243�56��- 7� ��� � � for the resampling variance, given
this hypothesis is true.
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Fig. 1: The conditional probability �����
	����� #����� ��� can easily ob-
tained either analytically or numerically as a histogram. Demand-
ing the likelihood ��� ��� ��	����� #����� to be below a certain value de-
fines a rejection threshold at the corresponding value of ��	����� #�����

For each measured resampling variance 243�56��- 7� � we can
now ask for the likelihood � � ��� 243�56��-67� ��� that it can be ex-
plained by the null hypothesis � . If this likelihood exceeds
a certain threshold, the result of the learning algorithm has
to be rejected (cf. Fig. 1). Since this estimator measures the
probability of a variance estimate relative to a null hypoth-
esis, we will call it a relative estimator. Even if an unbi-

ased absolute estimator for the variance of a solution may
be hard to find, it is always quite easy to construct a rel-
ative estimator. In this case resampling can be done even
with techniques that cannot be proved to provide consistent
estimators.
Let us summarize the general resampling recipe:

1. Define a pairwise distance in the parameter space of the
used unsupervised learning scenario.

2. Choose a resampling algorithm that reproduces the impor-
tant properties of the data set; (e.g. in the ICA-case the re-
sampling must leave the mixing matrix unchanged)

3. Define a null hypothesis to decide when a solution should
be rejected.

4. Calculate the solution from the given data and the variance
from the resampled data sets.

3. RESAMPLING ALGORITHMS FOR ICA

3.1. Application to ICA

In ICA, the parameters to be learned are the coefficients� 
�� of the separating matrix that decomposes the given data
���%���� into independent components �!
.���� � � � 
�� ���%���� .
Since both ! and "����� are unknown, it is impossible to re-
cover the scaling or the order of the rows of the separating
matrix # . All that one can get are the projection directions.
Consequently, we define the pairwise distance between two
solutions (i.e. two separating matrices) as the angle differ-
ence between the respective projection directions. This pro-
vides a reliability check for each component.

The mixing/demixing process can be seen as a change of
coordinates. From this point of view the data vector stays
the same, but is expressed in different coordinate systems
(passive transformation). Let &%$6� , be the canonical basis of
the estimated sources from the original data : & �'�($ ���.� .
Analogous, let &%) 
+, be the basis of the estimated sources on
a bootstrap sample: & 7 � � )�
�� 7
 .

Using this, we can define a component-wise distance
measure * � as the angle differences between the directions
of the independent component and the corresponding com-
ponents learned on the resampled data:

* �0�,+�-�.�.0/21�� $ �43�) �� � $ ��� �%35� � ) ��� � ��"

To calculate this angle difference, recall that component-
wise we have � 7
 � � � 7
�6 �87 �6�� �.� . With & 7 � & , this

leads to: )�
 � � $ ����# 70# 7:9 � 7 �� 
 , i.e. )�
 is the j-th column
of #(# 7 7:9 . (In fact, we first have to permute the rows of� 7 into the right order. However, we may circumvent this
difficulty by the choice of our resampling algorithm.)

If the true mixing matrix is known, we can define the
separation error ; � for each source in the same manner as
angle difference between the true source and the correspond-
ing learned independent component.
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In this paper we illustrate our resampling method for
two commonly used BSS algorithms.
The first method, JADE [6], is based on higher order statis-
tics and uses the joint diagonalization of matrices obtained
from ‘parallel slices’ of the fourth order cumulant tensor to
identify the mixing matrix. The second one, TDSEP [7],
relies on the time structure of signals and requires only sec-
ond order statistics, i.e. enforcing temporal decorrelation
between channels.

Time structure preserving bootstrap. For JADE the
resampling can be applied in a straightforward manner. How-
ever, the simple bootstrap approach destroys time structure,
but it can easily be generalized in such a way that temporal
decorrelation methods like TDSEP are still applicable. The
bootstrap resampling defines a series &/3���, with each 3�� indi-
cating how often the data point � ���� has been drawn. Using
this, we can calculate the resampled time-lagged correlation
matrices as

� ��� � � �� 	� ����� 3�� 3
� ������
	 ����� �

with � 3�� � � and 3���� &�� ) � )��6)$" " " , .
The filter trick. Another way of generating time struc-

ture preserving surrogate data is, for example, to apply a
(random) linear filter � on the measured (mixed) data:

� ���������� 	�
� ��� � � 3$���������� ���

�


 � 
 3
� 	�
�����

Since the mixing matrix
 

commutes with this filtering op-
erator ( � � )  �� � � ) and the filtered sources 	�!
 ���� �"� 	�
�����
are still mutually independent, the filtered signals ��!� ���� �� �������� can be interpreted as linear mixtures of the filtered
sources with the same mixing matrix A.

Null hypothesis. As null hypothesis in this ICA case
we choose simply: � � “The given data is generated by a
Gaussian and iid source”. Due to the symmetry of a nor-
mally distributed data set it is impossible, to estimate the
projection directions, i.e. the result of the ICA algorithm
will be completely produced by random fluctuations. In the
following we will accept a solution only if � � ��� 243�56��- 7� ���$#%�&

. Note, that � � 243�56��- 7� ��� � � depends strongly on the size
of the data set, since random fluctuations are more domi-
nant in small data sets. This may produce reasonable sta-
ble solutions even if the generating distribution fulfills � .
The relative likelihood estimator then prevents us from mis-
interpretation of the obtained result. For bigger data sets
with more channels, however, the chosen null hypothesis
may be too restricted to rule out certain results. In this ICA
case, we face the difficulty that � makes a statement about
all sources, but we want to obtain variance estimates for
each single source. Depending on what we are looking for,
it is often possible to refine the definition of � ; by using

even several null hypotheses. The important fact is that low
� � ��� 2 3�56��- 7� ��� does not necessarily mean that the result is
meaningful, it only means that the result displays structure
of the data that cannot be explained by � . Usually, both, an
absolute estimate and one (or several) relative estimates are
needed to make a prediction about the reliability of the re-
sult of an unsupervised learning algorithm. First, all results
that can be explained by the null hypothesis have to be dis-
carded, then, the remaining results can be judged according
to their absolute variance estimates.

3.2. The Resampling Algorithm

We will now give a short description of our resampling al-
gorithm. To omit the permutation problem, we first separate
the sources and then do the resampling only on the rotation
part of the separating matrices obtained from the surrogate
data sets.

After performing BSS, the estimated ICA-projections
are used to generate surrogate data by resampling. On the
whitened3 surrogate data, the source separation algorithm is
used again to estimate a rotation that separates this surrogate
data.

To compare different rotation matrices, we use the fact
that the matrix representation of the rotation group ')( �+* �
can be parameterized by , �+- � �/.103254 �* � ��6 
 -�� 
87 � 
89
with :;7 � 
�<8=1> �@? �= ? 
 > �A? 
 = ? �> , where the matrices 7 � 
 are
generators of the group and the - � 
 are the rotation parame-
ters (angles) of the rotation matrix , . Using this parametriza-
tion we can easily compare different N-dimensional rota-
tions by comparing the rotation parameters - � 
 .

Since the sources are already separated, the estimated
rotation matrices will be close to the identity matrix4. The
quantity Var �+-�� 
!� measures the instability of the separation
with respect to a rotation in the ��B%)DC � -plane. Since the re-
liability of a projection is bounded by the maximum angle
variance of all rotations that affect this direction, we de-
fine the uncertainty of the B -th ICA-projection as: E��GF �H +I0�
�J 243�56�+-�� 
!��"
Let us summarize the resampling algorithm:

1. Estimate the separating matrix K with some ICA
algorithm. Calculate the ICA-projections LNMOK@P .

2. Produce Q surrogate data sets from L and whiten these data
sets.

3. For each surrogate data set: produce a set of rotation matri-
ces by performing ICA.

4. Calculate variances of rotation parameters (angles) R � S .
5. For each ICA component calculate the uncertaintyT � MOUWV1XSZY ��	���[R � S � .

3The whitening transformation is defined as \�]_^a`b\ with `c^d�e \�\�fhg[ikj;lnm .
4For the following interpretation it is important to perform the resam-

pling when the sources are already separated, so that the o � S are dis-
tributed around zero, because phq$r[sut is a non-Abelian group; i.e. in gen-
eral vwrxoyt+vwr z3tw{^|vwr z3t+vwrxoyt .

76



3.3. Asymptotic Considerations for Resampling

Properties of resampling methods are typically studied in
the limit when the number of bootstrap samples �����
and the length of signal

� ��� [9]. In the case of boot-
strap resampling, as ����� , the bootstrap variance estima-
tor E 7� ��� � computed from the - 7� 
 ’s converge to E 7� ��� � F �H +I0�
 	 
 +�-�� � - 7� 
 � where - 7� 
 denotes the resampled angle

deviation and �� denotes the distribution generating it. Fur-
thermore, if �� � � , E47� ��� � converges to the true varianceE � � H +I0�
 J 
 +�-  � -�� 
 � as

� ��� . This is the case,
for example, if the original signal is i.i.d. in time. When
the data has time structure, �� does not necessarily con-
verge to the generating distribution

�
of the original sig-

nal anymore. Although we cannot neglect this difference
completely, it is small enough to use our scheme for the
purposes considered in this paper, e.g. in TDSEP, where
the -�� 
 depend on the variation of the time-lagged covari-
ances

� � 
 ��� � of the signals, we can bound the difference� � 
 � 
 +�-�� ���� 7� 
 ��� � � � 
 +�-  ���� � 
 ��� � � between the real vari-
ation and its bootstrap estimator as

� � � 
 ��#�� �	�� * =��� 7 = ��� *�� � � 3 * ��� �A�I� 3 * ��� ) C � B
�	 * =��� 7 = ��� * ) C �� B

if !63#" � ) � � � )%$ B F � � � ����� ����# � 3 � � � � ���+����� " In
our experiments, however, the bias is usually found to be
much smaller than this upper bound.

For the filter trick it is not so easy to show theoretically
whether it can be used as a absolute reliability estimate. But,
as stated before, there is no restriction for using it as a rela-
tive estimate. However, our experiments show numerically
that the filter trick may provide good absolute variance esti-
mates as well.

4. EXPERIMENTS

In every experiment that is reported here, we used both the
bootstrap and the filter trick. Remarkably, the results are
almost identical. The following figures show the results ob-
tained by the filter - resampling (filter length 5), the filter
coefficients are Gaussian random numbers and the used re-
sampling size is B=100 in all cases.

4.1. Separation Error vs. Uncertainty Estimate

To show the practical applicability of the resampling idea
to ICA, we compare the separation error ; � with the un-
certainty E � . The separation was performed on artificial 2D
mixtures of speech and music signals and iid data sets of the
same variance (1000 data points). To achieve different sep-
aration qualities, white Gaussian noise of different intensity

has been added to the mixtures. Figure 2 relates the uncer-
tainty to the separation error for JADE (TDSEP results look
qualitatively the same). In Fig. 2 (a) we see the separation
error distribution which has a strong peak for small values
of our uncertainty measure, whereas for large uncertainties
it tends to become flat, i.e. – as also seen from Fig. 2 (b) –
the uncertainty reflects very well the true separation error.
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Fig. 2: (a) The probability distribution for the separation error for a
small uncertainty is close to zero, for higher uncertainty it spreads
over a larger range. (b) The expected error increases with the un-
certainty.

4.2. Selecting the appropriate BSS algorithm

As our variance estimate is highly correlated with the (true)
separation error, it seems promising to use it as a model se-
lection criterion for: (a) selecting some hyperparameter of
the BSS algorithm, e.g. choosing the lag values for TDSEP
or (b) choosing between a set of different algorithms that
rely on different assumptions about the data, i.e. higher or-
der statistics (e.g. JADE, INFOMAX, FastICA, ...) or sec-
ond order statistics (e.g. TDSEP). It could, in principle, be
much better to extract the first component with one and the
next with another assumption. To illustrate the usefulness of
our reliability measure, we study a five-channel mixture of
two signals of pure white Gaussian noise, two audio signals
and one signal of uniformly distributed noise.

The reliability analysis for JADE gives the advice to rely
only on channels 1, 3 and 5 (cf. Fig. 3 left). In fact, these
are the channels that contain the audio signals and the uni-
formly distributed noise. The components 2 and 4 span the
subspace that contains the Gaussian noise. For these chan-
nels the uncertainty is above the threshold that we fixed for
the likelihood of the null hypothesis (horizontal line). The
same analysis applied to the TDSEP-projections (time lags� )$"$"$"$)�� � ) shows that TDSEP can give reliable estimates
only for the two audio sources (cf. Fig. 3 right) which has
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Fig. 3: Uncertainty of ICA projections of an artificial mixture
using JADE and TDSEP. Resampling displays the strengths and
weaknesses of the different models. The horizontal line indicates
the rejection threshold for the null hypothesis.

been expected because the noise is iid. According to our
measure, the estimation for the audio signals is more reli-
able in the TDSEP-case. Calculation of the separation error
verifies this: TDSEP separates better by about 2 orders of
magnitude (JADE: ; � ��� " � 3 � � 7 * ) ;�� ��� " � 3 � � 7 * , TD-
SEP: ; � ��� " � 3 � � 7�� ) ;�� ��� " 	 3 � � 7�� ). Finally, in our
example, estimating the audio sources with TDSEP and af-
ter this applying JADE to the orthogonal subspace, gives the
optimal solution since it combines the small separation er-
rors ;��.) ; � for TDSEP with the ability of JADE to separate
the uniformly distributed noise.

4.3. Blockwise uncertainty estimates

For a longer time series it is not only important to know
which ICA channels are reliable, but also to know whether
different parts of a given time series are more (or less) re-
liable to separate than others. To demonstrate these effects,
we mixed two audio sources5, where the mixtures are partly
corrupted by white Gaussian noise. Reliability analysis is
performed on windows of length 1000, shifted in steps of
250; the resulting variance estimates are smoothed. Fig. 4
shows again that the uncertainty measure is nicely corre-
lated with the true separation error, furthermore the vari-
ance goes systematically up within the noisy part but also in
other parts of the time series that do not seem to match the
assumptions underlying the algorithm.6 So our reliability
estimates can eventually be used to improve separation per-
formance by removing all but the ‘reliable’ parts of the time
series. For our example this reduces the overall separation
error by 2 orders of magnitude from �6" 
 3 � � 7 * to

� " 	 3 � � 7�� .
This moving-window resampling can detect instabilities of
the projections in two different ways: Besides the resam-
pling variance that can be calculated for each window, one
can also calculate the change of the projection directions

5recording 10s at 8kHz ^��� � �� data points
6For example, the peak in the last third of the time series can be traced

back to the fact that the original time series are correlated in this region.

additive noise no additive noise no additive noise 

Fig. 4: Upper panel: mixtures, partly corrupted by noise. Lower
panel: the blockwise variance estimate (solid line) vs the true sep-
aration error on this block (dotted line).

between two windows. The later has already been used suc-
cessfully by Makeig et. al. [10].

5. ASSIGNING MEANING: APPLICATION TO
BIOMEDICAL DATA

We now apply our reliability analysis to biomedical data
that has been produced by an MEG experiment with acous-
tic stimulation. The stimulation was achieved by presenting
alternating periods of music and silence, each of 30s length,
to the subjects right ear during 30 min. of total recording
time (for details see [11]). The measured DC magnetic field
values, sampled at a frequency of 0.4 Hz, gave a total num-
ber of 720 sample points for each of the 49 channels. While
previously [11] analyzing the data, we found that many of
the ICA components are seemingly meaningless and it took
some medical knowledge to find potential meaningful pro-
jections for a later close inspection. However, our relia-
bility assessment can also be seen as indication for mean-
ingful projections, i.e. meaningful components should have
low variance. In the experiment, BSS was performed on
the 23 most powerful principal components using (a) higher
order statistics (JADE) and (b) temporal decorrelation (TD-
SEP, time lag 0..50). The results in Fig. 5 show that none
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Fig. 5: Resampling on the biomedical data from MEG experiment
shows: (a) no JADE projection is reliable (has low uncertainty)
(b) TDSEP is able to identify three sources with low uncertainty.
Horizontal line: rejection threshold

of the JADE-projections (left) have small variance whereas
TDSEP (right) identifies three sources with a good reliabil-
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ity. In fact, these three components have physical meaning:
while component 23 is an internal very low frequency sig-
nal (drift) that is always present in DC-measurements, in-
terestingly component 6 shows a (noisy) rectangular wave-
form that clearly displays the

��� � ��	 on/off characteristics
of the stimulus (correlation to stimulus 0.7; see Fig. 6). The

� � � � � � � 	 � 
 �
�

�� ��� � �

� � � ��� � � �� � �
�� �
��

Fig. 6: Spatial field pattern and time course of TDSEP channel 6.

clear dipole-structure of the spatial field pattern in Fig. 6
underlines the relevance of this projection. The compo-
nents found by JADE do not show such a clear structure
and the strongest correlation of any component to the stim-
ulus is about 0.3, which is of the same order of magnitude
as the strongest correlated PCA-component before applying
JADE.

6. DISCUSSION

We proposed a simple method based on resampling tech-
niques to estimate the reliability of results that can be ob-
tained from unsupervised learning algorithms. After briefly
discussing the general resampling idea, we applied it to the
ICA scenario and showed, that our technique really approx-
imates the separation error, several directions are open(ed)
for applications. First, we may like to use it for model selec-
tion purposes to distinguish between algorithms or to chose
good hyperparameters (possibly even component-wise). Sec-
ond, variances can be estimated on blocks of data and sepa-
ration performance can be enhanced by using only low vari-
ance blocks where the model matches the data nicely. Fi-
nally reliability estimates can be used to find meaningful
components. Here our assumption is that the more mean-
ingful a component is, the more stably we should be able to
estimate it. In this sense artifacts appear of course also as
meaningful, whereas noisy directions are discarded easily,
due to their high uncertainty.
Future research will focus on the application of resampling
techniques to other unsupervised learning scenarios (e.g. for
clustering [12]). We intend to consider also Bayesian mod-
ellings where often a variance estimate comes for free, along
with the trained model.
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