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ABSTRACT

We present a new speech enhancement method for robust
speech recognition in a noisy car environment. The method
is based on the combination of two important building blocks,
namely blind source separation given two microphone sig-
nals and speech denoising using a hybrid Wavelet - Indepen-
dent Component Analysis (ICA) filterbank. The first block
separates point sources such as the passenger’s voice sig-
nal whereas the second block eliminates distributed noise
signals such as road and wind noise. We performed exper-
iments with real recordings taken while driving in a noisy
automobile environment. The method works nearly real-
time and achieves good separation results.

1. INTRODUCTION

Human computer interactions are becoming increasingly im-
portant in todays technological society and people are get-
ting used to interacting with computers on a daily basis. In
car environments, input modes for steering control or infor-
mation retrieval are traditionally limited to hand activated
devices such as the steering wheel and buttons on the board
panel. However, the natural way of using human voice com-
mands has been given considerable attention by car manu-
facturers in recent years. Although some commercial prod-
ucts are currently available, the performance of those sys-
tems usually degrades substantially under real-world con-
ditions. For example, a speech recognition system in an
automobile may process voice commands when spoken in a
quiet situation, but the system recognition performance may
be unacceptable in the presence of interferring sounds such
as the car engine noise, music, and other voices such as the
passenger’s voice.

In this paper, we consider a real-time speech enhance-
ment system for robust speech recognition that makes use of
multiple microphones for speech source separation as well

�
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as the intrinsic structures of speech signals for speech de-
noising. As illustrated in Figure 1, the method involves
two main stages: a) Blind Source Separation (BSS), which
exploits the time-correlation of speech signals captured by
two microphones and b) denoising, which uses the different
statistics in speech and noise signals to separate them.

Our motivation for combining the BSS and denoising
method is to exploit the strength of each individual method.
The BSS algorithm achieves good separation results when
two distinct point sources are recorded at the same time [4].
However, in real car environments we have to deal with dis-
tributed noise sources such as wind and road noise where
this assumption is not valid. Denoising algorithms usu-
ally work with the assumption of additive Gaussian noise
which is an appropriate model for the noise considered in
this framework. However denoising cannot deal with point
sources when the sources have similar statistical character-
istics such as two mixed speech signals. In combining these
two methods, we first separate a strongly interferring source
signal (such as the passenger’s voice) and then separate out
the remaining distributed noise signals by an adaptive de-
noising scheme.

Methods for noise level estimation, driver’s speech de-
tection and automatic speech recognition will not be dis-
cussed in this paper since conventional methods are avail-
able [1, 2, 3, 12]. The focus of this paper is to develop
and implement the two previously mentioned subschemes
where we concentrate on the new adaptive denoising part
applied to real recordings. The challenge of our design is to
perform in real-time and to enhance the speech signal under
difficult noise conditions.

2. BLIND SOURCE SEPARATION

The BSS approach adopted in this paper is the Multiple
Adaptive Decorrelation (MAD) algorithm [4] designed for
separation of non-stationary convolved signal mixtures. Al-
though several BSS algorithms exist, we choose this one due
to its real time performance and good separation results.

In the MAD framework, it is assumed that the original

272



Microphones

Detection
Driver

&
Noise Level

����
����
����
����

����
����
����
��������

����
����
����

����
����
����
����

�� ��
�����
�����
�����

					
					
					




















�����
�����
���������������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

Passenger

Radio

Wind Noise

Radio

Fan

Driver

Road Noise

BLIND SOURCE

SEPARATION

DENOISING

SPEECH

RECOGNITION

Fig. 1. Speech enhancement schematic representation

sources ������� can be recovered from the measurements

� �������
��
� �"!$# ��%$�&�'���)(*%$�

by finding a sequence of unmixing filter matrices +,��%$�
such that

-�'�����.�
/�
� �"! +,��%$� � ���&(*%$�10

The search is executed in the frequency domain where� �3254�����6 # �327�8�'�3254����14:9<;=;?>@4
9 being the length of the Fourier transform window which
is applied in an overlap-add fashion [4]. If the cross corre-
lation of the measurements is denoted by-ACB �3254����D�FEHG � �3254���� �JI �3254����LK
and that of the sources by-M �3254����D� E G �'�3254����8� I �3254���� K 4
+,�327� is found by minimizing

-+N4 -OQP �SRUTWV.XZY [\]_^ \`)a
b�

c �)d"e e +
-ACB �3254����J+ I ( M P �3254���� e e fg 0 �10h+,��%$�i�kjl4nmo%p;NqZ4rqts=su954 (1)+wv vW�327�x�zy (2)

The constraints (1) impose that the filter length q be much
smaller than 9 to solve the frequency permutation problem
[4]. Also scaling issues are solved by fixing the diagonal el-
ements of the filter matrices to unity { constraint (2) | . Since
the source correlation is updated as-M P �3254����D�S}�~n����� +,�327� -ACB �3254����J+ I5� 4
the cost basically minimizes the off-diagonal elements of
the cross correlation matrix

-ACB �3254���� . One finally obtains
the learning rule [4]� +u�U�327�D�����H���3254����J+,�327� -ACB �3254����
where � is the learning rate and

���3254����D��+ -ACB �3254����J+ I ( -M P �3254����10
The frequency domain version of the MAD algorithm has
been implemented in C code and is executable in real-time
on a 550 MHz PC. We performed several experiments with
real recordings. An example of a driver’s voice corrupted by
a passenger’s voice in a noisy car environment is available
from http://rhythm.ucsd.edu/ � visser/ICA2001. Two micro-
phones attached on each side of the center rear mirror were
used to record the files sampled at 16 kHz. The driver and
the passenger were speaking at the same time while driving
at 40 MPH with open windows, high fan noise and music
in the background. The algorithm successfully separated
the passenger’s voice from the driver’s voice. However, as
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Fig. 2. Recorded mixtures and separated sources

illustrated in Figure 2, both separated source files still con-
tain the original noise originating from the open window,
vibrations of the car, fan or music from the radio. BSS can-
not separate these background signals from the voices since
the latter are spread out in space and therefore are undis-
tinguishable at either microphone. This noise needs to be
removed by a denoising approach based on different statis-
tical properties of noise and speech.

3. ADAPTIVE DENOISING

Music has a less sparse probability density distribution than
speech and the other noise sources encountered such as the
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wind, fan or vibration noise can generally be approximated
by a Gaussian distribution due to the central limit theorem
[3]. This is a reasonable assumption in particular when
noise signals appear at the same time. Thus by transform-
ing the original signal into a space where super-Gaussian
distributions or sparseness are emphasized, speech compo-
nents will have large values while noise coefficients will be
small and can thus be eliminated by applying a coring or
shrinkage function [5].

The main questions are how to find the optimal basis
transformation and how the transformation should be im-
plemented to allow real-time performance. A natural way to
look for optimal basis functions is to learn them from sam-
ples of speech data using Independent Component Analy-
sis (ICA) [6]. Whereas these ICA learning approaches have
produced bandpass filter-like basis functions, the implemen-
tation of matrix operations to perform the basis transform

� � + �
is computationally costly

� ��� f � . Non-obvious technical
questions are how to choose the length and overlap between
neighboring speech segments since the matrix based ap-
proach in [6] is not shift-invariant and suffers from blocking
effects leading to poor reconstructed speech quality. This
shift dependence is also reflected in the redundancy of ba-
sis functions which often are time-shifted versions of the
same bandpass filter. Moreover the learned basis functions
in [6] cover the frequency range in a continuous and over-
lapping manner and thus also exhibit a redundancy in fre-
quency content.

Therefore the computation of sparse coefficients should
rather be implemented by using linear filters. The wavelet
transform provides such a signal mapping into sparse sub-
spaces [11]. It can be efficiently implemented by using a
critically sampled multiresolution filter bank [7] or its over-
sampled, shift-invariant equivalent [8]. Studies have fur-
ther shown that wavelet coefficients are naturally sparse [9].
Coding efficiency derived from ICA basis functions is not
significantly different from the one obtained with wavelets
[10]. Moreover the wavelet transform implements an or-
thogonal frequency decomposition with a constant subband
frequency width - center frequency ratio property. The sub-
division yields large subband-width at high frequencies and
low bandwidth at low frequencies in analogy to the mel
scale used in speech recognition. Therefore a sparse rep-
resentation and physiologically intuitive frequency subdi-
vision are obtained at the same time. Finally the orthog-
onality properties of wavelet decompositions are useful for
eliminating unwanted frequency bands as is frequently done
with speech for recognition purposes by highpass filtering
the data.

The approach adopted in this paper is to efficiently com-
pute initial shift-invariant wavelet coefficients and sparsify

them further if necessary by directly minimizing a sparse-
ness measure like in ICA. An bandpass filter will be used
to filter the wavelet coefficients into sparser subbands. Fig-
ure 3 illustrates the denoising scheme. For each subband
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Fig. 3. Filterbank: signal analysis is implemented using
upsampled versions of orthogonal low- and highpass filters� ! and

� d , respectively. For each subband ~ , wavelet coef-
ficients � v are then filtered by ICA filters �5v . A shrinkage
function � is applied. Signal reconstruction is done using
upsampled versions of synthesis filters � ! and � d which
are obtained from the time reversed analysis filters [11]

~r�kjl4 y�4
	
	
	o4��� y and the low frequency band ��� , we have
ICA subspace projected wavelet coefficients

� v ����v���� v
and ”reconstructed” wavelet coefficients

� v ��� �v �i� v
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� v is the wavelet coefficient vector and �5v the ICA filter ( � �v
is the reversed time version of �5v ). In the Fourier domain,
this yields� v�� �U27�����.vW� �U27��� �v � �U27��� vW� �U27�� e �.vW� �U27� e � vW� �U27�
where �.vW� �U27� is the complex Fourier transform of the filter
��v , � �v � �U27� the complex conjugate of �*v , � v and � v the
Fourier transforms of � v and � v respectively.

The design criterion for the filters �5v is to maximize the
a posteriori likelihood of � v-��v ��X R��@> � � v e � v 4���vL�8> � � vL� (3)

where the priors are given by

> � � v e � v 4���vL�D6�	�

� ��������� ��� ��� ���� �� 4> � � v �D6�	 

����� � �

Thus, for each subband ~ , we assume a Gaussian distribu-
tion with standard deviation ! v for the noise signal and a
super-Gaussian distribution modeled by the function " for
the coefficients � v . Problem (3) can be reduced to (4) by
considering the log likelihood:-��v ��XZY [ � � v"( � vL� f�#! fv 

�
$ " { � vW� � � | (4)

If the noise level ! v is low, the first term in eq. (4) prevails
and thus little can be done to improve the sparseness of �lv .
In this case, a shrinkage function which constitutes an ap-
proximate analytical solution to problem (4) can be applied.
For example, if a Laplacian distribution

"�� � �D� e � e
is assumed, the shrinkage function � is given by

� v � �"� � v �*�&%�Y V�[J� � vL�=X R��"� e � v e ((' �#!$vL� (5)

If !$v is large, the second term in (4) is emphasized and
wavelet coefficients can be sparsified. It is important that
filters ��v are reversed since it will finally only introduce an
amplitude modulation of �ov . A simple filter would intro-
duce phase distortion in the synthesis coefficients leading to
violation of the orthogonal reconstruction principle. Also
direct sparsification of � instead of � will lead to whiten-
ing of the signal since in that case, only the amplitude of
the signal can be changed whereas in problem (4), the filter
phase acts as an additional degree of freedom. Once sparse� are found, an additional shrinkage function can be used
to remove small coefficients. Note that the first term also
prevents the filter from simply whitening the original sig-
nal � or scaling its mean amplitude down to levels where
sparseness is minimized. It preserves relevant sparse fea-
tures present in the original signal. The quality of � v de-
pends on an accurate estimation of the noise level !ov which
can be supplied by conventional techniques [1, 12].

4. REAL RECORDING EXAMPLE FOR
DENOISING

The recorded BSS car files in section 2 were used to illus-
trate the filterbank performance. The resulting frequency
subdivision as well as the subband coefficients before and
after denoising are shown in Figure 4. 12 tap Daubechies
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Fig. 4. Denoising: subbands # j , 	
	
	 , ) , ��� (From top to
bottom)

wavelet filters were chosen for
� ! , � d , � ! and � d [11].

It can be seen that the lowest frequency subbands should
not contain significant amounts of speech information as
speech features are usually concentrated in the 125-4000 Hz
range. Figure 4 shows that coefficients in subbands j - * are
sparse enough. These coefficients were shrinked by apply-
ing (5) i.e. a Laplacian probability distribution for speech
was assumed. When considering subbands + , ) and ��� , it
was initially attempted to completely discard them during
reconstruction. No speech quality loss was noticed for sub-
bands ) and ��� while canceling subband + resulted in a loss
of low frequency components in the driver’s voice. The
strong road noise level therefore masks sparse speech co-
efficients and ICA filters have to be designed. The cost
(4) was minimized by using a Sequential Quadratic Pro-
gramming (SQP) optimization routine in Matlab. The filter
length was 688 taps and was linearly interpolated by using
120 equally time spaced optimization parameters. The func-
tion "�� �o�7�-, .�V � y  � B/ � f � was used as the sparseness cost
term. It can be made as sparse as the Laplacian distribution
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but has the advantage of being continuously differentiable.
One can see the gradual sparseness improvement after

filtering with ICA filter ��� shown in Figure 5. As the per-

σ x a y w

0.12

0.125

0.13

0.15

0.2

Fig. 5. Learning ICA filters for various estimated noise lev-
els ! (subband # 5)

fect reconstruction of � from � is relaxed to accommodate
a stronger noise level, the filter learns the noise features to
deconvolve them from the underlying sparse speech coeffi-
cients. The initial filter looks more like a Gabor filter which
represented the original wavelet bandpass filter. The final
learned filter looks more like the road noise features and
thus allows to uncover the underlying speech signal. The
remaining sparse coefficents are clearly identified as speech
signals when observing their time alignment with the high
frequency subbands.

The implementation of the filterbank was done in Mat-
lab. Estimation of the noise level was done manually at this
point so as to guarantee a good sound quality. For computa-
tionally effective implementations, we consider developing
a lookup table with filters computed off-line for different
car speeds, car environments and noise levels, stored in a
database and implemented in C code. The actual filter will
then be picked on-line from the table according to the esti-
mated noise levels, car speed and functional state of other
devices in the car environment (radio or fan switched on,
open window). If filters become too long and thus compu-
tation of time convolution lengthy, implementation of the
filterbank can be done in the Fourier domain, thus reducing
the number of multiplications involved [11].

The SNR was improved significantly as it can be seen
in Figure 4 (denoised audio files are downloadable from
http://rhythm.ucsd.edu/ � visser/ICA2001). As opposed to
conventional denoising methods like spectral subtraction [12],
no artifacts like musical noise are generated and non sta-
tionary noise sources can be dealt with. Indeed, if the noise

environment and level are estimated online, the shrinkage
function thresholds and ICA filters can be adjusted accord-
ingly. Whereas the phase information of the original files
was slightly affected by the nonlinear shrinkage function,
we are confident that the speech recognition word error rate
will be significantly decreased. We also note that the cep-
stral coefficients are rather insensitive to mild phase distor-
tion [3].

5. CONCLUSION

A real-time two stage speech enhancement scheme was pro-
posed. Its performance was illustrated on speech data recorded
in a noisy car environment. An automatic procedure to es-
timate the noise level and discriminate between the driver’s
and passenger’s voice needs to be added to complete the
application. The first procedure can be arranged by record-
ing during speaker silence and estimating the signal ampli-
tude [1, 12]. The latter procedure can be solved by apply-
ing known solutions to direction of arrival estimation since
the location of the microphones are known [3], or more
advanced techniques using microphones arrays [2]. Em-
phasis was put on the separation of both the distinct point
sources as well as distributed noise signals while maintain-
ing near real-time performance. Taking advantage of BSS
to efficiently remove a point source and of the new denois-
ing algorithm to adaptively denoise the remaining signals in
different subbands with a sparseness objective, thereby ex-
ploiting the intrinsic statistical structure of the speech sig-
nal, is key to this method. Optimizations can be done using
filters from lookup tables and smoother shrinkage functions
for better denoising quality. Our current research focuses on
quantitative studies of word error rate reduction of speech
recognition systems on the Aurora benchmark dataset and
compares the proposed speech enhancement scheme to con-
ventional techniques.
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