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ABSTRACT

The separation of convolved signals can be performed in
the frequency domain by splitting the signal into frequency
bands, applying ICA techniques to each band and reassem-
bling all bands to obtain the separated output signals. As
ICA cannot guarantee for any ordering of output signals,
the reassembly of the frequency bands must use some addi-
tional information in order to assign the frequency bands
consistently to the right output. A number of different crite-
ria have been proposed to solve this permutation problem.
We have applied genetic algorithms at this point, which
have the advantage of coping well with the discrete, multi-
modal search space that characterizes this problem. Fur-
thermore, applying a multiobjective genetic agorithm al-
lows to take more than one criterion for optimal separation
into account simultaneously. This can give an insight into
the relative merit of various criteria of separation optimal-

ity.

1. INTRODUCTION

While the separation of instantaneous mixtures of signals
can be performed satisfactorily by a number of different
methods, e.g. information maximization or minimization of
cross cumulants [1,2,3], the separation of convolved mix-
tures remains a challenging problem.

One often applied approach isto split the signalsinto a
number of frequency bands, separate each frequency band
by those methods applicable to additive mixtures, and to
reassemble the thus separated frequency bands of the sig-
nals [4,5,6,7,8,9]. However, this reassembly still poses a
problem, as source separation cannot guarantee for consis-
tent assignment of the same sources to the same output
channels, so that criteria are required to avoid permutations
between frequency bands.

There are a number of different criteria which all cap-
ture some aspect of the correct permutation, for example
amplitude modulation correlation, which is especially suit-
able for speech signal separation, or flatness criteria, which
restrict the allowed variability of the demixing filter that is
effectively composed by calculating different demixing
matrices for different frequencies. However, each of the
proposed criteria can only capture one aspect of the optimal
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permutation, therefore we propose an algorithm that pays
regard to a number of different criteria simultaneously.

Since the relative merit of these criteria is not known
beforehand, multiobjective genetic algorithms were used,
thus leaving the relative weighting of the criteria open until
the very end of optimization.

This also allows evaluating the relative merit of criteria
by calculating the objective performance of all multiobjec-
tive optima in test cases with artificially introduced permu-
tations.

11 Test Setup

The approach of using genetic algorithms for permutation
correction was tested by artificially permuted signals for the
case of two sources. In a first stage of processing, signals
are windowed and an FFT is applied to split them into
bands and an artificial random permutation is introduced. In
the optimization loop, bands are reassembled according to a
bit-sequence, in which there is one bit for each frequency
that decides whether the bands are to be used in their given
order or whether they are to be exchanged. Using this reas-
sembled speech, the criteria for separation quality are cal-
culated, some in the time and some in the frequency do-
main, which are then used in the genetic algorithm to decide
on the next generation of bit-sequences. The performance of
this algorithm was tested in a single-objective optimization
for four criteriaand al combinations of two of these criteria
were used in the multiobjective algorithm.

1.2  Genetic Algorithms

Genetic agorithms are a means of stochastic optimization,
which is especially useful for the permutation problem due
to a couple of advantages:

* Asisgeneraly the advantage of stochastic optimi-
zation, genetic algorithms do not get trapped in lo-
cal optima when their parameters are set appropri-
ately. This is especially useful for permutation
correction, as the criteria al have strong local
minima.

e Genetic agorithms show quicker convergence
than other stochastic optimization algorithms, es-
pecialy for high-dimensional problems[10].

e Genetic algorithms are especialy useful for dis-
crete optimization, as they naturally use binary
strings to code solutions.



« An efficient agorithm for multiobjective genetic
optimization exists, which allows an entire set of
multiobjectively optimal solutions to be evolved
simultaneously [11].

For a detailed explanation of genetic algorithms, the
reader is referred to [10] and [12]. The basic idea is taken
from nature’s means of “optimizing” its species — a popula-
tion of individuals is left to fight for survival; the fittest
individuals survive and get a chance to recombine their ge-
netic information and pass them on to the next generation,
subject to some additional mutations.

This natural optimization is modeled by genetic opti-
mization — solutions are coded either in the form of a binary
string (as it was done here, by coding frequency bins to be
exchanged by a “1” and those to be left in the given order
by a “0”) or by vectors of floating point values. A number
of solutions (“the population™) is evaluated, and those solu-
tions leading to the best objective values are selected to
form the next population. For this, individual solutions are
combined by randomly splitting the binary strings and re-
combining them, and some “mutations” are introduced by
flipping a small number of bits.

2. MULTIOBJECTIVE OPTIMIZATION

For the problem of signal separation, a number of different
optimality criteria have been proposed. These will be de-
scribed in Section Il1. Each of these criteria have been used
separately to perform source separation, but since each cri-
terion only captures one aspect of optimal separation qual-
ity, an adequate combination of the criteria should prove
more useful for permutation correction than the application
of just one criterion.

21  Pareto Optimality

One widely accepted definition for optimality with respect
to multiple criteria was introduced by V. Pareto at the be-
ginning of the previous century, and is still widely accepted
today.

One individual is considered superior to another in the
multiobjective sense, if it is better regarding at least one
criterion and at least equally good with regard to all other
criteria. The inferior individual is then said to be TWomi-
nated "by the other.

An individual is considered Pareto-optimal T if it is
not dominated by any other individual - which means that
no other individual exists, which improves upon one crite-
rion without allowing another criterion to get worse.

To determine the standing of one individual of a
population, it is necessary to count by how many individu-
als it is dominated - i.e. how many individuals are better in
the Pareto-sense. For performing the selection in a mul-
tiobjective genetic algorithm, the standing or Pareto-rank =
of all individuals is determined in this way, and the result-
ing Pareto-rank is used to select the next generation in an
appropriate random process. Figure 1 shows individuals of
a 2-criterion multiobjective genetic algorithm with their
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corresponding Pareto-rank.
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Figl. Population of multiobjective genetic algorithm with
corresponding Pareto-rank, where c; and c, are the two cri-
teria considered.

However, in such multiobjective genetic algorithms,
individuals tend to concentrate on one small part of the Pa-
reto-surface (the set of all Pareto-optimal solutions to the
problem) [13]. This problem, which is known as genetic
drift, is also observed in single-objective genetic algorithms
faced with a number of equivalent optima.

A number of approaches exist to counteract this prob-
lem, most notably fitness sharing, which penalizes indi-
viduals in “crowded” areas of the search space [13]. In our
implementation, a variant described in [14] was employed,
which calculates penalties in such a way that crowding is
avoided but that any Pareto-optimal individual will remain
higher in rank than any non-optimal individual after penal-
ties are added.

3. CRITERIA

3.1 Oveview

There are two common approaches to solve the permutation
problem. One approach seeks for that permutation which
maximizes the statistical dependencies between the time
courses of the different frequency bands within the spectro-
gram of each recovered source signal [4,8,9,15]. The other
approach tries to make the impulse response of the mixing
filters finite, which corresponds to a smooth frequency re-
sponse of the mixing filters [5,7].

Both approaches are based on the same assumption,
i.e. the spectral smoothness of the recovered source signals.
This assumption is well-justified for real-world audio sig-
nals.

With the first approach, the spectral smoothness as-
sumption is translated into the evaluation of the dependen-
cies between time courses of different frequency compo-
nents of each source signal. The second approach considers
the (multiplicative) impact of the mixing filters on the
spectrum of the recovered signals and requires smooth fre-
guency responses of the mixing filters.

For this investigation, three of the formerly proposed
permutation correction criteria [7,9,15] were chosen, as
well as a simple time domain dependency criterion for
comparison. All four criteria are explained in detail below.



3.2 Crosscumulants between adjacent frequency

bands

The criterion proposed in [9] follows the first approach, i.e.
the direct evaluation of the spectral smoothness of the re-
covered sources. The spectral smoothness is measured in
terms of the dependencies between different frequency
bands of the spectrogram by means of fourth order cross-
cumulants:

Cum(Yo(i) Yi0)) = E(Yali)| 2 ()] 2) -
E(1Ym(D)| ) E(YG)I ) -
E(Ynl)Y) G)I) 2~
E(Yni) Vi) 2

wherem,l = 1..N, N is the number of sensorsandi,j =
1..L, with L being the number of frequency bins, and an
asterisk denotes the complex conjugate of asignal.

For datistically independent signals, the cross-
cumulants are zero. Dependent frequency components have
non-zero cross-cumulants. Based on this property, a per-
mutation correction is possible. Problems may occur in case
of short signals where the estimation of cross-cumulants is
difficult.

D

3.3 Amplitude Modulation Correlation

A related criterion, considering the amplitude modulation
correlation (Amcor) structure of speech, is proposed in [15].
First, the covariances of the amplitudes are computed for all
pairs of frequency bands:

c(Xi,Y;) = E(X ()] - E{X ()1 1Y; @)1 - E{Y; @)1 ()

where X (t’) and Y; (t”) are the short time spectra of the
two signals x(t) and y(t) in the frequency bands i and j, re-
spectively.

Then, al these covariance values, which show the ex-
tent to which amplitude modulation in the two channels at
the two considered frequencies is correlated, are integrated
into the criterion

H = ZC(Xi’Yi)' ©)

i, )%

According to [15], the amplitude modulation is a dis-
tinct criterion for blind source separation, local permuta-
tions are penalized by the cost function, and, because a high
number of constraints is imposed, the algorithm achieves a
good separation quality on real world data.

3.4  Spectral smoothness of the mixing filters

This criterion was evaluated using an algorithm proposed in
[7]. In this method, the permutations of the mixing filter
spectral components are corrected according to the criterion

d= nZ\aiz(i ~D-a, () +aul-D-ax@) @
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where a;5(i) and ay (i) are the diagonal elements of the
normalized mixing matrix A(i)=[1 ax(i); ax(i) 1] in the i"
frequency band and nf is the number of frequency bands.

3.5 Cross-Correlation of Time Domain Signals

For comparison, the maximum value of the cross-
correlation of the time domain separated signals was also
included. This criterion is meant to serve as a simple test
case of the optimization algorithm itself, though it cannot
be considered very promising of a criterion for source sepa-
ration.

3.6  Evaluation of Criteria

One basic assumption for the applied algorithm is that the
different criteriawill capture different aspects of optimality.
To test this assumption, all criteria were evaluated for sig-
nals with artificially introduced permutations of frequency
bands. Figures 2 to 5 show the values of the criteria, de-
pending on the number of introduced permutations. For
each number of permutations, 20 different random permu-
tations were generated, and the plots show the mean, the
standard deviation, the maximum and the minimum for
each criterion.

criterion evaluation
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crogs-cumulants

5 10 15 20 25 30
number of permutations

Fig 2. Mean, mean + standard deviation, maximum and
minimum of cross-cumulants, calculated according to (1),
over number of permutations.

As can be seen from these figures, al criteria have
their global minimum when no permutation is introduced,
or when al bands are exchanged, and the maximum occurs,
when there is a permutation of exactly half the frequency
bands. This shows the feasibility of each criterion for opti-
mization. However, all criteria have strong local minima,
which can be expected to cause problems for gradient-based
optimization.
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Fig 3. Mean, mean + standard deviation, maximum and

minimum of amplitude modulation correlation, calculated

according to (3), over number of permutations.

criterion evaluation
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Fig 4. Mean, mean + standard deviation, maximum and

minimum of spectral flatness criterion, calculated according

to (4), over number of permutations.
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Fig 5. Mean, mean + standard deviation, maximum and

minimum of time domain cross-correlation over number of

permutations.
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Table 1 shows the sums of the correlation coefficients
of al criteriavalue over all numbers of permutations, which
were calculated as

N g
— Xy, p -
cor, =y —=—=

p=1 Gx,po—y,p
N E[(X, — ) )Yy~ Hy)]
pZLJE[(xp — 14,p) 2 IWELY, — 4y,5)7]

©)

Here, x and y are the criteriaand L4 and L4, are the
mean values of x and y, respectively, for p permutations. N
is the number of frequency bands, which was set to 64 for
calculating the table, while the figures were generated at
N =32

Table 1: Correlation coefficients cor,, of criteria

Cumulants | Amcor | Flatness | Correélation
Cumulants |1 0.5958 |0.0181 0.1205
Amcor 1 0.5663 0.2205
Flatness 1 0.0828
Correlation 1

As can be seen from Table 1, the correlation between
amplitude modulation correlation and the flatness as well as
the cumulant criterion is especially high. However, at a cor-
relation value of about 0.6, it can till be expected, that the
other criteria will give significant new information above
the sole evaluation of the Amcor criterion.

The flathess and the cross-cumulant criterion have a
very low correlation, and it thus in an especially interesting
case for joint optimization, as the information that is con-
tained in both criteria will complement each other well.

4. RESULTS

To evaluate the performance of the criteria in multiobjec-
tive optimization, two sound signals of mae German
speakers were transformed to the frequency domain, using a
hamming window and 256 frequency bands. An artificial
random permutation of these signals was introduced. The
parameters of the genetic algorithm were set to 256 Gen-
erations, 10% mutation and 90% of crossover.

An example for how optimization proceeds is shown
in Figures 6 and 7, where the entire population and the final
area of convergence are shown for a joint optimization of
amplitude modulation correlation and the flatness criterion.

Table 2 shows the maximum degree of permutation
correction that was achieved with each combination and
single objective optimization run.



Table 2: Percentage of permutation correction with
single and multiobjective optimization

Cumulants | Amcor | Flatness | Correlation
Cumulants | 75% 93.8% |84.4% 81.2%
Amcor 93.8% |87.5% 90.6%
Flatness 62.5% 78.2%
Correlation 68.8%

As can be seen from Table 2, optimization by amplitude
modulation correlation has led to the best results for the set
of test criteria. The set of solutions found in multiobjective
optimization of amplitude modulation correlation together
with the flatness criterion show, how this impacts the set of
solutions found by multiobjective optimization. It can be
seen from Figures 6 and 7, how the best solutions always lie
at the lowest criterion values of amplitude modulation cor-
relation, while the value of the other criterion is less signifi-
cant regarding the degree of attainable permutation correc-
tion.
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Fig 6. Entire population after joint optimization of spectral
flatness with amplitude modulation correlation.
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Fig 7. Results after joint optimization of spectral flathess
with amplitude modulation correlation.

A similar effect can be observed when amplitude
modulation correlation is optimized jointly with the cross-
cumulant criterion or the cross-correlation criterion.
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Thus, it can be seen that the three criteria tested here
do not positively influence the outcome of optimization
when used together with amplitude modulation correlation.

However, when two criteria are used for multiobjective
optimization, which complement each other well, signifi-
cant improvements can be attained over single objective
optimization. This can be seen for the case of the flathess
criterion together with cross cumulants, which had a very
low correlation of 0.0181. In this case, multi-objective op-
timization delivered aresult of 84.4%, which is a significant
improvement over the 62.5% and 75.0%, respectively,
when single objective optimization was applied. Also, op-
timizing cross-cumulants together with cross-correlation
improves the results from 75.0% and 68.8%, respectively,
in single objective optimization to 81.2% in joint optimiza-
tion.

Figure 8 shows the results of the former case, where
the final population is marked with circles while the initial
population is marked by stars.

entire population after joint optimization
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Fig 8. Entire set of populations after joint optimization of
cross-cumulants with spectral flatness.

From these sets of results, in a next step it would be
interesting to compute a criterion that captures al criteria
with a suitable weighting. Based on the assumption that the
optimal combination lies in the improvement of a weighted
sum of al criteria, the appropriate weighting of the criteria
can be calculated by taking the best point of the optimiza-
tion as an ideal one. If this point is to be the optimum of
single-objective weighted sum optimization, its weighted
sum objective value

Z Vvl E:i,opt
I

with W, as the weight of the i ™ criterion C,, and

(6)

Ci opt asthevalue of the i ™ criterion at the optimal point,

must be smaller than the objective value of any other Pa-
reto-optimal point k, which leads to the requirement

.B5%
.f8%
LT
.B4%
LBT%



I;I: IZ\N' m:i,opt < IZ\N' m:i,k ' (7)

Thisis in effect a standard linear programming prob-
lem, which allows the weights to be calculated by standard
algorithms, subject to the constraint

ZWi =1

With such a weighted sum value function, local optima
should become smoother, leading to a quality function
which integrates all aspects of optimality into one criterion
and till lends itself well to other optimization algorithms,
which perform faster than genetic algorithms but may not
handle local optima as well.

(8)

5. CONCLUSIONS

Genetic optimization has been used to perform permutation
correction for convolved speech signals in accordance with
four different criteria. By using multi-objective optimiza-
tion, it was possible to take more than one criterion into
account simultaneously, which has allowed an evaluation of
relative and joint merits of criteria.

Among the criteria that were tested, amplitude modu-
lation correlation led to the best results, in single as well as
multi-objective optimization.

However, multiobjective optimization has an advan-
tage, when the criteria of interest complement each other
well, in which case greatly improved results are attainable.
Also, a multiobjective view of the final separation results
can give a good overview of the relative merit of criteria,
and may be used in a further step for deriving single objec-
tive quality functions that integrate more than one aspect of
optimal source separation.

The four employed criteria were meant as a test case
for the algorithm itself, and is expected that further mul-
tiobjective optimization of other possible criteria — e.g.
feature signals in the time or frequency domain — will lead
to further insight into the relationships between different
criteria and ultimately to a suitable combination criterion.
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