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ABSTRACT

This paper relates to a method of enhancing speech quality
by eliminating noise in speech presence intervals as well as
in speech absence intervals based on speech absence prob-
ability. To determine the speech presence and absence in-
tervals, we utilize the global soft decision. This decision
makes the estimated statistical parameters of signal density
models more reliable. Based on these parameters the noise
suppressor equipped with sparse code shrinkage functions
reduces noise considerably in real-time.

1. INTRODUCTION

The performance of a speech recognition system degrades
when there is a mismatch between the training clean speech
and the noisy input speech that is to be recognized. The sit-
uation is even worse in speech coding systems. The quality
degradation gets worse in the speech processed by speech
coding systems than in the noisy input speech. A conven-
tional approach to alleviate this problem is the spectral en-
hancement technique. Spectral enhancement is used to esti-
mate a noise spectrum in noise intervals where speech sig-
nals are not present, and in turn to improve a speech spec-
trum in a predetermined speech interval based on the noise
spectrum estimate. Speech presence and absence intervals
are determined from the uncorrelated statistical models of
the spectra of clean speech and noise [1] [2].

In this paper, we try to lay a bridge between statisti-
cal speech processing for conventional speech enhancement
and sparse code shrinkage which was originally considered
for image de-noising [3]. There have been attempts to en-
hance noisy speech based on the sparse code shrinkage tech-
nique [4] [5]. However, both works pay little attention to
the estimation of parameters needed for the calculation of
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shrinkage functions and in consequence they are proven un-
suitable for on-line computation. Because any kind of opti-
mal estimator cannot be obtained in closed-form for a gen-
eralized Gaussian density model, a closed-form solution of
shrinkage function was obtained using a special kind of den-
sity model [3]. To make the problem at hand tractable, we
adopt this shrinkage function as the noise suppressor for a
generalized Gaussian density model. Then, we focus on the
reliable estimation of statistical parameters based on global
soft decision which decides whether the current frame is
speech-absent or not. By doing so, the speech enhance-
ment system works in real-time, and noise is considerably
reduced.

2. SPEECH ENHANCEMENT

Referring to Fig. 1, the speech enhancement system in-
volves a pre-processing step, a speech enhancement step
and a post-processing step. In the pre-processing step, an
input speech-plus-noise(noisy) signal in the time domain
is pre-emphasized and subjected to an Independent Com-
ponent Analysis Basis Function Transform(ICABFT). As a
result, we get a noisy speech coefficient vectorY(m). In
the speech enhancement step, the global speech absence
probability (SAP) is calculated based on estimated noisy
speech and noise parameters. The term ‘global’ comes from
the fact that the decision, whether the speech is present or
not, is performed globally using the coefficients of all the
ICA basis functions in a given time frame. Noise parame-
ters are updated only when the global SAP exceeds a pre-
determined threshold. Using predicted speech parameters
and updated noise parameters we apply the shrinkage func-
tion to each component ofY(m) to enhance the noisy speech.
This results in the enhanced speech coefficient vectorS(m).
In the post-processing step,S(m) undergoes a sequence of
operations such as inverse ICABFT, overlap-and-add oper-
ation and de-emphasis, resulting in an enhanced speech sig-
nal in the time domain.
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2.1. Pre-Processing and ICA basis functions

We assume that an input noisy speech signal isy(n) and
the signal of anm-th frame isym(n), which is one of the
frames obtained by segmentation of the signaly(n). The
signalŷm(n) andŷm(D +n), which is pre-emphasized and
overlaps with the rear portion of the preceding frame by pre-
emphasis, are given by

ŷm(n) = ŷm−1(L + n), 0 ≤ n < D
ŷm(D + n)= ym(n)− ζ · ym(n− 1), 0 ≤ n < L

, (1)

whereD is the overlap length with the preceding frame,L
is the length of frame shift andζ is the pre-emphasis param-
eter. Then, prior to the ICABFT, the pre-emphasized input
speech signal is subjected to the windowing given by

ỹm(n)

=





ŷm(n)sin2(π(n+0.5)
2D ), 0 ≤ n < D

ŷm(n), D ≤ n < L

ŷm(n)sin2(π(n−L+D+0.5)
2D ), L ≤ n < M

, (2)

whereM = D + L is the size of ICABFT. The obtained
signalỹm(n) is converted into a signal in ICA basis domain
by ICABFT given by

Y(m) = AT
oo · [ỹm(0) ỹm(1) · · · ỹm(M − 1)]T , (3)

whereAoo is a ‘frequency-ordered’ and orthogonalized ver-
sion of the matrixA, columns of which are ICA basis func-
tions.

ICA basis functions can be obtained by various algo-
rithms [6], [7], [8] with the clean speech data pre-processed
as described above. After estimating the ICA basis function
matrix A, we ordered the basis functions by the location
of their power spectral densities, resulting in a frequency-
ordered basis function matrix,Ao. The term ‘frequency-
ordered’ means that the basis functions having power spec-
tral densities at lower frequency portions appear earlier in
Ao than the ones at higher frequency portions. Then, we
orthogonalize this by the following

Aoo = Ao(AT
o Ao)−1/2. (4)

BecauseAoo is orthogonal, the noise is still Gaussian in the
ICA basis domain. Therefore, the ICABFT is used to ob-
tain theM -dimensional coefficient vectorY(m), in which
speech components are sparse while the statistical proper-
ties of noise components are preserved.

The pre-processing step involving overlapping segmen-
tation, pre-emphasis and windowing seems to be needless in
view of sparse coding. However, the pre-processing has an
important meaning for speech signals which have both the
inter-frame correlations in the time domain and the inter-
frequency correlations in the frequency domain. In particu-
lar, a pre-emphasis of high frequencies is required to obtain

similar spectral amplitude for all formants. This is because
high frequency formants, although possessing relevant in-
formation, have smaller amplitude with respect to low fre-
quency formants. Fig. 2 shows the plot of power spec-
tral densities contained in frequency-ordered and orthogo-
nalized ICA basis functions. The spectral components of
each basis occupy a sub-band, which overlaps with neigh-
boring sub-bands. This is conceptually very similar to the
filter-bank approaches in speech signal processing. There-
fore, the object of the ICABFT is to form independent signal
channels, of which frequency contents are also independent.

2.2. Speech Enhancement in ICA basis function domain

As previously mentioned, the speech signal applied to the
speech enhancement step is a noisy signalY(m) which has
undergone pre-emphasis, windowing, and the ICABFT. The
output of this step is a noise suppressed speech signalS(m).

2.2.1. Hypotheses and Density Models

Assuming that the noisy speech observationY(m) is a sum
of clean speechS(m) and additive noiseN(m), we con-
sider the statistical model employing two ‘global’ hypothe-
ses,H0 andH1, which indicate speech absence and pres-
ence atm-th frame, respectively.

H0 : Y(m) = N(m),
H1 : Y(m) = S(m) + N(m) (5)

Moreover, since speech absence and presence arise inde-
pendent component-wise, we further consider the statisti-
cal model employing two ‘local’ hypotheses,H0,k andH1,k

for each independent component, which indicate speech ab-
sence and presence atk-th basis of them-th frame, respec-
tively.

H0,k : Yk(m) = Nk(m),
H1,k : Yk(m) = Sk(m) + Nk(m) (6)

It is also assumed thatYk(m) andSk(m) have zero-mean
generalized Gaussian densities andNk(m) has a zero-mean
Gaussian density.

p(Yk(m)) =
νY (k, m) · ηY (k, m)
2 · Γ(1/νY (k, m))

(7)

·exp{−[ηY (k, m) · |Yk(m)|]νY (k,m)}
p(Sk(m)) =

νS(k, m) · ηS(k, m)
2 · Γ(1/νS(k,m))

(8)

·exp{−[ηS(k, m) · |Sk(m)|]νS(k,m)}
p(Nk(m)) =

1√
2πσ2

N (k, m)

·exp

{
− Nk(m)2

2σ2
N (k, m)

}
, (9)
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in which

ηX(k,m) =
1√

σ2
X(k, m)

·
[
Γ(3/νX(k, m))
Γ(1/νX(k, m))

]1/2

, (10)

where

νX(k, m) = F

(
σ|X|(k,m)√

σ2
X(k, m)

)
, (11)

F (ν) =
Γ(2/ν)√

Γ(1/ν) · Γ(3/ν)
, (12)

andX denotes eitherY or S.
The sparse density used in [3] does not fit the real den-

sity of the speech very well. As seen in Fig. 3, it fits the real
density very well near the origin. However, there are signif-
icant deviations for larger values, in which the information
about the speech signals reside. With this inaccurate sparse
density, it is difficult to detect the speech absence intervals,
and in turn, it will cause the noise variance to deviate from
the real value. This is why we assumed thatYk(m) and
Sk(m) follow the generalized Gaussian densities.

2.2.2. Statistical Parameters Initialization

Statistical parameters are initialized for a predetermined num-
ber of initial frames to collect noisy speech, enhanced speech,
and background noise information. These parameters are
noisy speech power estimate, noisy speech magnitude es-
timate, enhanced speech power estimate, enhanced speech
magnitude estimate and noise power estimate. Form = 0,
the parameters are initialized by

σ2
Y (k, 0) = Yk(0)2,

σ|Y |(k, 0) = |Yk(0)|,
σ2

S(k, 0) = Sk(0)2,
σ|S|(k, 0) = |Sk(0)|,
σ2

N (k, 0) = Nk(0)2.

(13)

and form <INIT-FRAMES, the parameters are updated by

σ2
Y (k, m) = ζY 2σ2

Y (k, m−1) + (1−ζY 2)Yk(m)2, (14)

σ|Y |(k,m) = ζ|Y |σ|Y |(k, m−1) + (1−ζ|Y |)|Yk(m)|, (15)

σ2
S(k, m) = ζS2σ2

S(k, m−1) + (1−ζS2)Sk(m)2, (16)

σ|S|(k,m) = ζ|S|σ|S|(k, m−1) + (1−ζ|S|)|Sk(m)|, (17)

σ2
N (k, m) = ζN2σ2

N (k, m−1)) + (1−ζN2)Nk(m)2, (18)

whereζY 2 , ζ|Y |, ζS2 , ζ|S|, andζN2 are pre-defined constants
in [0, 1].

Assuming that only noise is present at eachk-th basis
for the first INIT-FRAMESframes, each enhanced speech
coefficientSk(m) is computed by

Sk(m) = GAINMIN · Yk(m), (19)

whereGAINMIN is the minimum gain. The value of this is
0.2238, which corresponds to the one in the IS–127 standard
used for North American CDMA digital PCS.

2.2.3. Global Soft Decision

After initialization, the frame index is incremented, and the
signal of the corresponding frame (herein them-th frame)
is processed. The noisy speech power estimateσ2

Y (k, m)
and the noisy speech magnitude estimateσ|Y |(k,m) are
smoothed by (14) and (15) in consideration for the inter-
frame correlation of the speech signal. Then, each general-
ized Gaussian exponentνY (k,m) is computed by (11) and
(12) using the method described in [9].

The global SAP,p(H0|Y(m)) of them-th frame is com-
puted by

p(H0|Y(m)) =
p(H0,Y(m))

p(Y(m))

=
1∏M

k=1 [1 + qkΛk(m)]
, (20)

in which qk is the ratio defined by

qk =
p(H1,k)
p(H0,k)

, (21)

andΛk(m) is the likelihood ratio computed for thek-th ba-
sis of them-th frame as

Λk(m) =
p(Yk(m)|H1,k)
p(Yk(m)|H0,k)

. (22)

The computation of the right-hand side of (20) is possi-
ble becauseYk(m)’s are statistically independent due to the
philosophy of the extraction algorithm of the ICA basis func-
tions. Thus, in deriving (20), the following equations were
utilized

p(H0,Y(m)) =
M∏

k=1

[p(Yk(m)|H0,k)p(H0,k)] , (23)

and

p(Y(m)) =
∏M

k=1 p(Yk(m))

=
∏M

k=1 [p(Yk(m)|H0,k)p(H0,k)
+p(Yk(m)|H1,k)p(H1,k)] .(24)

We compare the global SAP with a threshold that can be
set by the user. If the global SAP exceeds the threshold, the
noise power estimate is updated by (18). If the global SAP
does not exceed the threshold, the noise power estimate re-
mains the same.
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2.2.4. Speech Parameters Prediction

Regardless of the global SAP, prediction of the speech power
estimate, σ2

S(k,m) and the speech magnitude estimate,
σ|S|(k, m) are performed.

σ2
S(k, m) = ζpred

S2 σ2
S(k, m− 1) + (1− ζpred

S2 )

· Yk(m)2

1 + σ2
N (k, m)/σ2

S(k, m− 1)
(25)

σ|S|(k, m) = ζpred
|S| σ|S|(k, m− 1) + (1− ζpred

|S| )

·
√

Yk(m)2

1 + σ2
N (k,m)/σ2

S(k, m− 1)
(26)

This prediction comes from the Wiener filter. In most
cases, this is not a crucial step in affecting enhanced speech
quality. However, the spectrogram of the enhanced speech
with this step included looks sharper.

2.2.5. Sparse Code Shrinkage and Parameters Update

The enhanced speech coefficientSk(m) of thek-th basis of
them-th frame is computed with the updated and predicted
parameters. Although we assumed different density models
from the sparse densities used in the sparse code shrinkage
technique, the shrinkage functions are adopted as noise sup-
pressors, because the shapes of shrinkage functions of these
two different density models are close to each other. More-
over, there is an advantage that the shrinkage functions can
be expressed in closed-forms.

There are two models to computeSk(m) [3]. If
√

σ2
S(k, m)p(Sk(m) = 0) <

1√
2
, (27)

thenSk(m) is obtained by using (28) through (30)

Sk(m) =
1

1 + σ2
N (k, m)a

· sign(Yk(m))

·max(0, |Yk(m)| − bσ2
N (k, m)), (28)

where

b =
2p(Sk(m) = 0)σ2

S(k, m)− σ|S|(k,m)
σ2

S(k, m)− σ|S|(k, m)2
, (29)

a =
1

σ2
S(k,m)

[1− σ|S|(k, m)b]. (30)

If (27) is not satisfied, thenSk(m) is obtained by using (31)
through (35)

Sk(m) = sign(Yk(m)) ·max

(
0,
|Yk(m)| − ad

2

+
1
2

√
(|Yk(m)|+ ad)2 − 4σ2

N (k,m)(α + 3)
)

, (31)

where

d =
√

σ2
S(k, m), (32)

k = d2p(Sk(m) = 0)2, (33)

α =
2− k +

√
k(k + 4)

2k − 1
, (34)

a =
√

α(α + 1)/2. (35)

In calculatingSk(m) we need to computep(Sk(m) = 0).
Sk(m) also has the zero-mean generalized Gaussian den-
sity. Thus,

p(Sk(m) = 0) =
νS(k, m) · ηS(k,m)
2 · Γ(1/νS(k, m))

. (36)

The computation ofνS(k,m) may not be necessary for each
frame if we already have the values ofνS(k, m) from the
off-line calculation. However, these values depend on a
training database.

If Sk(m), computed from the model selected by (27),
is less thanGAINMINYk(m), thenSk(m) should be set
to GAINMINYk(m). This prevents the noise suppressor
from over-shrinking.

Sk(m) = max(Sk(m), GAINMINYk(m)) (37)

Unless speech enhancement is performed on all of the
frames, the parameters are updated for the next frame. The
noise power estimate is maintained for the next frame as

σ2
N (k,m + 1) = σ2

N (k, m), 1 ≤ k ≤ M. (38)

The speech power estimateσ2
S(k,m) and the speech mag-

nitude estimateσ|S|(k, m) are corrected by (16) and (17)
using the enhanced speech coefficients.

After the parameters are updated for the next frame, the
frame index is incremented to perform speech enhancement
for all the frames.

2.3. Post-Processing

In post-processing, the enhanced signalS(m) is converted
back into a signal of the time domain by an Inverse ICABFT
given by (39), then de-emphasized.

s̃m = AooS(m) (39)

Prior to the de-emphasis, the signal obtained through the In-
verse ICABFT is subjected to an overlap-and-add operation.

ŝm(n) =
{

s̃m(n) + s̃m−1(L + n), 0 ≤ n < D
s̃m(n), D ≤ n < L

(40)

Then, the de-emphasis is performed to compute the speech
signalsm(n) of them-th frame in the time domain.

sm(n) = ŝm(n) + ζ · sm(n− 1), 0 ≤ n < L (41)

Note that thesm’s are of length,L and non-overlapping.
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3. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the effect of the proposed speech enhancement
method using sparse code shrinkage and global soft deci-
sion, we performed an experiment on the ITU Korean database.
This database consists of 96 phonetically balanced Korean
sentence pairs from four male and four female speakers.
These 16 bit/16 kHz sampled clean speech data were down-
sampled to produce 16 bit/8 kHz sampled data.

72 sentence pairs uttered by three male and three fe-
male speakers were used for learning the ICA basis func-
tion matrix, A. In this experiment the ICA basis func-
tions were extracted directly by the algorithm described in
[8]. The speech signals were 16 bit/8 kHz sampled monau-
ral data. The size of overlapping,D, frame shift,L and
ICABFT, M were 16, 48, and 64, respectively. These cor-
respond to 2 msec. of overlapping, 6 msec. of frame shift(or
non-overlapping frame size at the output), and 8 msec. of
ICABFT(or overlapping frame size at the input). The pa-
rameter,ζ used in pre-emphasis and de-emphasis was 0.95.
The statistical learning parameters,ζY 2 , ζ|Y |, ζS2 , ζ|S|, ζ

pred
S2 ,

ζpred
|S| , andζN2 were set to 0.5, 0.5, 0.5, 0.5, 0.8, 0.8, and

0.98, respectively. The number of initial frames,INIT-FRAMES
was 10. The hypotheses ratio,qk was10−4 for all the inde-
pendent components. The threshold value which determines
whether the current frame is speech-absent was set to 0.95.
Speech parameters,νS(k, m) are estimated frame by frame.

The remaining 24 sentence pairs from a male and a fe-
male speaker were prepared for testing. The signal-to-noise
ratio(SNR) of each of the 24 sentence pairs was varied us-
ing three types of noise, white Gaussian, car, and babble
noise on the basis of NOISEX-92 database. According to
the SNR, noises were simply added sample by sample after
adjusting the signal levels by the method described in the
ITU-T recommendation P.830.

Figure 4 shows an experimental result of the proposed
speech enhancement system for a test speech along with
the clean and noisy speech. As expected, the enhanced
speech reduced noise significantly and effectively in real-
time. The quality of the enhanced speech was almost com-
patible with the one by the method in [2], except that es-
pecially in speech presence intervals, there were some mi-
nuscule artifacts. When the parameters were not properly
estimated, this artifact became a harsh sound. The artifacts
were thought to be caused by a mismatch between the sta-
tistical density models used in parameter estimations and
shrinkage functions.

For speech quality evaluation, segmental SNR was con-
sidered as an objective criterion.

SNR(m) = 10log10

∑L−1
i=0 s2(mL + i)∑L−1

i=0 [s(mL + i)− sm(i)]2
(42)

This is believed to be a more adequate measure for speech

quality evaluation, because it considers the difference be-
tween clean speech and the output of the speech enhance-
ment system as the noise signal. Non-overlapping frames
of 128 samples were used. Table 1 shows the objective test
results for two different input SNRs and for three different
noise types. For noisy and enhanced speech, the mean value
of each segmental SNR was calculated for all the frames of
all the test sentences. To show the noise suppression effect,
the difference between average segmental SNRs of noisy
and enhanced speech was also indicated in boldface figures.
These figures represent the amount of noise actually sup-
pressed on the average. In spite of the assumption that the
noise density is Gaussian, noise reduction for colored noises
(car and babble) were very effective.

Table 1. Averages of segmental SNRs.
SNR 10 dB 20 dB

segmental noisy enhanced noisy enhanced

SNR enhanced - noisy enhanced - noisy

-13.64 -6.00 -3.62 1.53
white

7.64 5.15

-13.42 -7.89 -3.39 0.73
car

5.53 4.12

-13.41 -7.99 -3.38 0.62
babble

5.42 4.00
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Fig. 1. A flowchart illustrating the speech enhancement
method.

Fig. 2. Power spectral densities (0 to 4kHz) of the
frequency-ordered and orthogonalized ICA basis function
matrix,Aoo.
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Fig. 3. Comparison of two estimated densities, generalized
Gaussian density and sparse density used in [3]. Note log
scale on y-axis.

CLEAN SPEECH

NOISY SPEECH

ENHANCED SPEECH

Fig. 4. An example of speech enhancement for a pair of test
noisy sentences. A white Gaussian noise was used. SNR
was 10dB.
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