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ABSTRACT

We propose an efficient method based on the concept of
maximal correlation that reduces the post-nonlinear blind
source separation problem (PNL BSS) to a linear BSS prob-
lem. For this we apply the Alternating Conditional Expec-
tation (ACE) algorithm – a powerful technique from non-
parametric statistics – to approximately invert the (post-)non-
linear functions. Interestingly, in the framework of the ACE
method convergence can be proven and in the PNL BSS
scenario the optimal transformation found by ACE will co-
incide with the desired inverse functions. After the non-
linearities have been removed by ACE, temporal decorrela-
tion (TD) allows us to recover the source signals. An ex-
cellent performance underlines the validity of our approach
and demonstrates the ACE-TD method on realistic exam-
ples.

1. INTRODUCTION

Blind source separation (BSS) research has mainly been
focused on variants of linear ICA and temporal decorrela-
tion methods (see e.g. [14, 6, 5, 7, 1, 2, 13, 29, 22, 12]).
Linear BSS assumes that at time � each component 	�
�� ��
of the observed � -dimensional data vector ��� �� is a linear
combination of ����� statistically independent signals:	�
�� ����������� ��! 
 �#"�� � �� (e.g. [12]). The source signals "$� � ��
are unknown, as are the coefficients ! 
 � of the mixing ma-
trix % . The goal is therefore to estimate both unknowns
from the observed signals �&� �� , i.e. a separating matrix '
and signals ()� �����'*�&� �� that estimate +,� �� .

However, non-linearities that distort the mixed signals,
pose a challenging problem for “conventional” BSS meth-
ods, where the mixing model is linear instantaneous or con-
volutive. The general nonlinear mixing model is (cf. [12])

- � ����/.10�23� ��54 (1)6
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where . is an arbitrary nonlinear transformation (at least ap-
proximately invertible). An important special case are post-
nonlinear (PNL) mixtures

- � ��7�/.108%923� ��54�: (2)

where . is an invertible nonlinear function that operates
componentwise and % is a linear mixing matrix. Because
this PNL model, which has been introduced by Taleb and
Jutten [25], is an important subclass with interesting prop-
erties it attracted the interest of several researchers [25, 15,
27]. Furthermore it is often an adequate modelling of real-
world physical systems, where nonlinear transfer functions
appear; e.g. in the fields of telecommunications or biomedi-
cal data recording sensors can have a nonlinear characteris-
tics.
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Fig. 1: Building blocks of the PNL mixing model and the separa-
tion system.

Algorithmic solutions of eq.(2) have used e.g. self-or-
ganizing maps [20, 18], extensions of GTM [21], neural
networks [27, 19], parametric sigmoidal functions [16] or
ensemble learning [26] to approximate the nonlinearity .
(or its inverse ] ). Also kernel based methods were tried on
very simple toy signals [8] and more recently also on real-
world data using temporal decorrelation in feature space
[10]. Note, that most existing methods (except [10]) are
of high computational cost and depending on the algorithm
are prone to run into local minima.

In our approach to the PNL BSS problem we first ap-
proximately invert the post-nonlinearity using the ACE al-
gorithm (estimating ] ) and then apply a standard BSS tech-
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nique [3, 29] that relies on temporal decorrelation (estimat-
ing the unmixing matrix ' ) (cf. Fig.1). By virtue of the
ACE framework, which is briefly introduced in subsection
2.2, we prove that the algorithm converges to the correct in-
verse nonlinearities – provided that they exist. Some imple-
mentation issues are discussed and numerical simulations
illustrating the method are described in section 3. Finally a
conclusion is given in section 4.

2. METHODS

For the sake of simplicity we introduce our method for the�����
case. The extension to the general case is easily pos-

sible, but omitted for better readability.

2.1. Problem statement

Let us consider the
�

dimensional post-nonlinear mixing
model: 	 � ��� � 0�� ���L" �	� � ��
 "�
 4	 
 ��� 
 0�� 
��L" �	� � 

 "�
 4
where " � and "�
 are independent source signals, that are
temporally correlated, 	 � and 	 
 are the observed signals,% � 0��D
 � 4 is the mixing matrix and � � and � 
 are the com-
ponentwise nonlinear transformations which are invertible.

Obviously, any attempt to separate such a mixture by a
linear BSS algorithm will fail, unless one could invert the
functions � � and � 
 at least approximately. In this work we
propose that this can be achieved by maximizing the corre-
lation

corr 0�� � 05	 � 4�:�� 
 05	 
 4I4 (3)

with respect to nonlinear functions � � and � 
 . This means,
we want to find transformations � � and � 
 of the observed
signals such that the relationship between the transformed
variables becomes linear. Intuitively speaking, the relation-
ship is linear, if the signals are aligned in a scatterplot, i.e. if
they are maximally correlated. Under certain conditions that
we will state in detail later, this problem is solved by the
ACE method that finds so called optimal transformations ����
and ���
 which maximize eq.(3). One can prove existence
and uniqueness of those optimal transformations and it can
be shown that the ACE algorithm, which is described in the
following, converges to these solutions (cf. [4]).

2.2. ACE algorithm

The ACE algorithm is an iterative procedure for finding the
optimal nonlinear functions � �� and � �
 . The starting point is
the observation that for fixed � � the optimal � 
 is given by

� 
 05	 
 4&������� � 05	 � 4�� 	 
�� :
and conversely, for fixed � 
 the optimal � � is

� � 05	 � 4&������� 
 05	 
 4�� 	 �����

The key idea of the ACE algorithm is therefore to compute
alternately the respective conditional expectations. To avoid
trivial solutions one normalizes � � 05	 � 4 in each step by using

the function norm � ����� �! �#"$����� � 
�% �'&
 . The algorithm for
two variables is summarized below. It is also possible to
extend the procedure to the multivariate case, however, for
further details we refer to [11, 4].

Algorithm 1 The ACE algorithm for two variables� initialize ��)( *,+� 05	 � 4	- 	 ��. � � 	 � � �
repeat�)(0/21 � +
 05	 
 43-4�����)(0/2+� 05	 � 45�#	 
��6�)(0/21 � +� 05	 � 43-4�����)(0/21 � +
 05	 
 45�#	 ����)(0/21 � +� 05	 � 43- 6�)(0/21 � +� 05	 � 4 . � � 6�)(0/21 � +� 05	 � 4�� �
until ����� � 05	 � 4879� 
 05	 
 4 � 
 fails to decrease

An important point in the implementation of this algo-
rithm is the estimation of the conditional expectations from
the data. Usually, the conditional expectations are com-
puted by data smoothing for which numerous techniques
exist (cf. [4, 9]). Care has to be taken to balance the trade-
off between the fidelity to the data against the smoothness of
the estimated curve. Our implementation utilizes a nearest
neighbor smoothing that applies a simple moving average
filter to appropriately sorted data.

By applying �)�� and ���
 to the mixed signals 	 � and 	 
 we
remove the effect of the nonlinear functions � � and � 
 . In
the following we will substantiate this claim more formally.
We show for : � �;� ���$" �<� � ��
 "�
 and : 
 �=� 
��L" �<� � 

#"�

that ���� and ���
 obtained from the ACE procedure are the de-
sired inverse functions for the case that : � and : 
 are jointly
normal distributed, with other words we prove the following
relationship: >

�� 0�: � 4? �@���� 0A� � 0�: � 4I4	B�: �>
�
 0�: 
 4? �@� �
 0A� 
 0�: 
 4I4<B�: 
C� (4)

Almost all work for the proof has already been done in
Proposition 5.4. and Theorem 5.3. of [4] which – by notic-
ing that the correlation of two signals does not change, if we
scale one or both signals – implies:

���� 05	 � 4	B��������
 05	 
 4�� 	 ������
 05	 
 4	B��������� 05	 � 4�� 	 
����
Note that the conditional expectation ����� �
 05	 
 4�� 	 ��� is

a function of 	 � and the expectation is taken with respect to	 
 , analogously for the second expression.
Since ���� 05	 � 4 �

>
�� 0�: � 4 and ���
 05	 
 4 �

>
�
 0�: 
 4 , furthermore	 � ��� � 0�: � 4 and 	 
 ��� 
 0�: 
 4 we get:>

�� 0�: � 4	B����
>
�
 0�: 
 4�� � � 0�: � 4 �>

�
 0�: 
 4<BD���
>
�� 0�: � 4�� � 
 0�: 
 4 ���
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Because � � and � 
 are invertible functions they can be omit-
ted in the condition of the conditional expectation, leading
us to:

>
�� 0�: � 4	B����

>
�
 0�: 
 4�� : ���>

�
 0�: 
 4	B����
>
�� 0�: � 4�� : 
C��� (5)

Assuming that the vector 0�: � :: 
 4�� is normally distributed
and the correlation corr 0�: � :: 
 4 does not vanish, a straight-
forward calculation shows

����: 
 � : ��� B�: �����: � � : 
C� B�: 
��
This means that : � and : 
 satisfy eq. (5), which then imme-
diately implies our claim eq. (4). Fortunately, in our appli-
cation the above assumptions are usually fulfilled because
mixed signals are more Gaussian and more correlated than
unmixed signals. On the other hand, even if the assump-
tions are not perfectly met, experiments show that the ACE
algorithm still equalizes the nonlinearities well.

Summarizing the key idea, by searching for nonlinear
transformations, that maximize the linear correlations be-
tween the non-linearly transformed observed variables, we
can approximate the inverses of the post-nonlinearities.

2.3. Source separation

For a separation of the signals one could in principle ap-
ply any BSS technique, capable of solving the now approx-
imately linear problem. However, experiments show that
only second-order methods which use temporal informa-
tion are sufficiently robust to reliably recover the sources.
Therefore we use TDSEP, an implementation based on the
simultaneous diagonalization of several time-delayed corre-
lation matrices for the blind identification of the unmixing
matrix ' (cf. [3, 29, 28]).

3. NUMERICAL SIMULATIONS

To demonstrate the performance of the proposed method we
apply our algorithm to several post-nonlinear mixtures, both
instantaneous and convolutive.

The first data set consists of Gaussian AR-processes of
the form:

" 
 �
��

� � �
� � " 
�� � ��� 
I: ���
	 : ����� :I��: (6)

where � 
 is white Gaussian noise with mean zero and vari-
ance �



. For the experiment we choose �


 ��	 , ���� ,� � �
and generate 2000 data points.

We use a
� � �

mixing matrix to get linearly mixed sig-
nals � and apply strong nonlinear distortions

	 � � �� � � � 0�: � � ��54��D:��� � ���: (7)

	 
 � �� � � 
 0�: 
 � ��54���������� 0�	���: 
 � ��54�:

which were also used by Taleb and Jutten in [24]. The dis-
tribution of these mixed signals has a highly nonlinear struc-
ture as visible in the scatter plot in Fig. 2.
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Fig. 2: (a) Scatter plot of the mixed AR-processes ( � �"! #%$ vs ��&�! #%$ )
and (b) waveforms of the original sources (top), the linearly un-
mixed signals (middle) and recovered sources (bottom).
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Fig. 3: (a) Nonlinear functions '(� and ')& . (b) True (thin line) and
estimated (bold line) inverse functions *�� and *(& .

The application of the ACE algorithm – using a local
nearest neighbor smoother (window length 31) for the con-
ditional expectation – yields the estimated nonlinear func-
tions � � and � 
 shown in Fig. 3. We see that the true in-
verses of the nonlinearities � � and � 
 are approximated well.
Although the match is not perfect (could be optimized by
better smoothers) it is now possible to separate the signals
using the TDSEP algorithm, where 20 time-delayed corre-
lation matrices are simultaneously diagonalized (time lags+ ��� � � � � ). Figure 2 (b) shows that the waveforms of the
recovered sources closely resemble the original ones, while
the result of the linear unmixing of the PNL mixture can
clearly not recover the sources. This is also confirmed by
comparing the output distributions that are shown in Fig. 4
as a scatter plot.

One favorable property of our method is its nice scaling
behavior. To show this, we will now test the algorithm with
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Fig. 4: Scatter plot of the output distribution of a linear (‘+’) and
the proposed nonlinear ACE-TD algorithm (‘.’).

natural audio sources, where the input data set consists of 4
sound signals with

� � : � � � data points each. For this case
we apply the multivariate version of the ACE algorithm,
which computes the optimal functions by maximizing the
generalized correlation criterion corr 0�� � 05	 � 4�: � � / �!
 � / 05	 / 4I4 .For details of the implementation we refer to [4, 11, 9]. As
in the first experiment, these source signals were mixed by
a linear model �3� ���� % +,� �� , with a random (

� � �
) matrix% . After the linear mixing the following nonlinearities were

applied:

� � 0�: � 4 � : �	� � � 	�� : ��� 
 0�: 
 4 � � � ��: 
<� ���,�
>
0 ��: 
 4� � 0�: � 4 � ���,�

>
0 � : � 4���,0�:��#4 � : �� �

(8)

Figure 5 shows the results of the separation using ACE-TD
(smoothing window length 51) and TDSEP ( + � � � � � � ). We
observe again a very good separation performance that is
quantified by calculating the correlation coefficients (shown
in table 1) between the source signals and the extracted
components. This is also confirmed by listening to the sep-
arated audio signals, were we perceive almost no crosstalk,
although the noise level is slightly increased (cf. the silent
parts of signal 2 in Fig. 5).

The third experiment gives an example for the applica-
tion of our method to convolutive mixtures with a PNL dis-
tortion. We deliberately distorted real-room recordings1 of
speech and background music made by Lee [17] with non-
linear transfer functions as in our first example (cf. eq.(7)).
For the separation we apply a convolutive BSS algorithm
of Parra et al. that requires only second-order statistics by

1Available on the internet via
http://sloan.salk.edu/˜tewon/Blind/blind audio.html
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Fig. 5: Four channel audio dataset: (a) waveforms of the original
sources, (b) linearly unmixed signals with TDSEP and (c) recov-
ered sources using ACE-TD.

exploiting the non-stationarity of the signals [23]. While
an unmixing of the distorted recordings obviously fails, we
could achieve a good separation after the unsupervised lin-
earization by the ACE procedure (cf. Fig. 6).

4. DISCUSSION AND CONCLUSION

In this work we proposed a simple technique for the blind
separation of linear mixtures with a post-nonlinear distor-
tion. The main ingredients of our algorithm, which we call
ACE-TD, are: first, a search for nonlinear transformations
that maximize the linear correlations between transformed
variables and which approximate the inverses of the PNLs.
This search can be done highly efficient by the ACE tech-
nique [4] from non-parametric statistics, that performs an
alternating estimation of conditional expectations by smooth-
ing of scatter plots. Effectively, this nonlinear modeling
procedure solves the PNL mixture problem by transform-
ing it back into a linear one. Therefore, second, a temporal
decorrelation BSS algorithm (e.g. [3, 29]) can be applied.
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TDSEP
� � � 
 �

�
� �" � 0.10 0.56 0.31 -0.13"�
 -0.01 0.26 0.02 0.47"

� 0.06 0.12 0.76 -0.05" � -0.07 0.66 -0.21 0.11

ACE-TD" � 0.97 -.01 -.005 0.03"�
 0.03 0.94 -0.02 -0.005"
� 0.01 0.07 0.95 -0.007" � 0.04 0.002 0.001 0.96

Table 1: Correlation coefficients for the signals shown in Fig. 5

Clearly, ACE is not limited to the
�3���

case but it
scales naturally to the � � � case for which an algorith-
mic description can be found in [4, 9]. Moreover, the algo-
rithm can make beneficial use of additional sensors in the
overdetermined BSS case as then the joint distribution of
�3� �� becomes more and more Gaussian, which is beneficial
for ACE. Furthermore, our method works also for convolu-
tive mixtures, which is attractive for real-room BSS, where
nonlinear transfer functions of the sensors (microphones)
or amplifiers would impede a proper separation. Conclud-
ing, the proposed framework gives a simple algorithm of
high efficiency with a solid theoretical background for sig-
nal separation in applications with a PNL distortion, that are
of importance e.g. in real-world sensor technology.

Future research will be concerned with a better tuning
of the smoothers which are essential in the ACE algorithm
to the PNL blind source separation scenario.
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