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ABSTRACT

We address the problem of blind separation of mix-
tures consisting of pure unknown delays in addition
to scalar mixing coefficients. Such a mixture is a hy-
brid situation resembling both static and convolutive
mixtures, but essentially different from both: On one
hand, static-mixture approaches cannot be readily ap-
plied in this context; On the other hand, conventional
convolutive-mixture approaches are not only over - pa-
rameterized for this problem, but are also incapable
of accommodating fractional delays. We propose a
second-order statistics based algorithm, which uses a
specially parameterized approximate joint diagonaliza-
tion of spectral matrices to estimate the mixing coeffi-
cients as well as the delays. The joint diagonalization
algorithm is an extension of the ”AC-DC” algorithm,
previously proposed in the context of static mixtures.
We provide analytic expressions for all minimization
steps for the two sensors / two sources case, and demon-
strate the performance using simulations results.

1. INTRODUCTION

Traditionally, blind source separation has been addressed
in two distinct contexts: static mixtures and convolu-
tive mixtures. In the static mixture context (e.g., [1]
and references therein) it is assumed that a constant
memoryless mixing matrix relates the source signals to
the observed signals. In the convolutive (or dynamic)
mixture context (e.g., [2, 3, 4]) it is assumed that each
of the observed signals consists of differently filtered
combinations of the source signals. The different mix-
ture filters are usually assumed to be Finite Impulse
Response (FIR), but are otherwise unconstrained. Nat-
urally, a static mixture is a special case of the more
general convolutive mixture, when the FIR length is
one.
In this paper we address an interim situation, where

the mixing is constrained to consist of pure delays in ad-
dition to static mixture coefficients. The delays are as-
sumed to have occurred prior to the sampling process,

and are therefore not necessarily an integer multiple
of the sampling period. The (pre-sampled, continuous-
time) source signals are assumed to be band-limited, so
that the sampling is at least at the Nyquist rate (i.e.,
the sampling rate is at least twice the maximal fre-
quency of the signals’ spectra). Although such delays
can be represented as convolutive mixtures in discrete-
time, such a representation requires an infinite number
of coefficients, and cannot consist of causal FIR mod-
els. Thus, this framework cannot be regarded as a spe-
cial case of the (FIR) convolutive-mixture framework.
The only parameters to be estimated in addition to the
static mixture coefficients are the delays, rather than
multiple FIR coefficients.

As customary in the ”blind” framework, no prior
knowledge is assumed on the mixing. As for the sources,
we shall only assume that they are statistically inde-
pendent wide-sense stationary (WSS) random signals
with unknown spectra, properly band-limited as dis-
cussed above. In fact, since our estimation procedure
will be based on second-order statistics only, it would
suffice to assume that the sources are uncorrelated,
which is a weaker assumption than statistical indepen-
dence.

The occurrence of pure delays mixtures in practice
is likely in situations of sensor arrays positioned in non-
reverberant environments, such as in open-space acous-
tics situation. Nevertheless, the problem of estimat-
ing and separating pure-delays mixtures has seen little
treatment in the literature so far. In [5] some prelimi-
nary analytic solutions are proposed, based on second
and/or fourth order spectra; However, the model ad-
dressed does not allow for unknown mixing coefficients
in addition to the delays (although it is indicated that
one of the solutions can be adapted to accommodate
ones). In [6] the case of fewer sensors than sources is
addressed, but again there’s no provision for unknown
mixing coefficients. In [7] the delays are assumed to be
integer multiples of the sampling period.

In this paper we address the following L sources -
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L sensors model (to be later reduced to L = 2):

xp(t) =

L
∑

q=1

apqsn(t− τpq) p = 1, 2, . . . L (1)

where apq are the mixing coefficients and τpq are the
delays from source q to sensor p. To mitigate the
ambiguity associated with the sources’ undetermined
time-origin, we use as a ”working assumption” zero de-
lays from each source to the ”respective” sensor, i.e.,
τpp = 0 for p = 1, 2, . . . L. Additional ambiguities are
associated with the possible commutation of scales be-
tween the sources and the mixing coefficients. These
can be resolved, e.g., by assuming that all sources have
unit power, but such an assumption is immaterial to
the algorithm derived in here.
The available data are samples of the continuous-

time observations,

xp[n] = xp(nT ) n = 1, 2, . . . N (2)

where T is the sampling period (we shall use parenthe-
ses / brackets to enclose continuous / discrete indices,
respectively). As mentioned above, it is assumed that
all the source signals (and hence the observed signals)
are WSS with unknown spectra, bandlimited at (an-
gular) frequency π/T . For simplicity, we also assume
that the sources have zero mean. From the observed
samples it is desired to estimate the mixing coefficients
and delays, and to recover the (sampled, possibly scaled
and delayed version of) the source signals.
The paper is organized as follows: In the next sec-

tion we present the estimation problem as a specially
parameterized joint diagonalization problem in the fre-
quency domain; In section 3 we propose an iterative
algorithm for the joint diagonalization, based on an ex-
tension of the ”AC-DC” algorithm [8]; In section 4 we
address the reconstruction of source signals; In section
5 we present some simulations results, with concluding
remarks in section 6.

2. FORMULATION AS A JOINT

DIAGONALIZATION PROBLEM

Since we assumed that the source signals are zero-mean
WSS, the received signals’ correlation functions are given
(using (1) and the sources’ statistical independence) by

Rx
mn(τ) = E[xm(t+ τ)xn(t)]

=

L
∑

p=1

L
∑

q=1

ampanqE[sp(t− τmp + τ)sq(t− τnq)]

=
L
∑

q=1

amqanqR
s
q(τ + τnq − τmq) 1 ≤ m,n ≤ L

(3)

where Rx
mn(τ) denotes the correlation between the m-

th and the n-th received signals, and Rs
q(τ) denotes the

autocorrelation of the q-th source signal.
Fourier-transforming (3), we obtain the relations

between cross spectra:

Sx
mn(ω) =

L
∑

q=1

amqanqS
s
q (ω)e

−jω(τmq−τnq )

1 ≤ m,n ≤ L (4)

where Sx
mn(ω) is the cross-spectrum between the m-th

and n-th received signal and Ss
q (ω) is the q-th source’s

(unknown) spectrum. Eq. (4) can also be expressed in
matrix-form as

Sx(ω) = B(ω)Ss(ω)B
H(ω) (5)

where Sx(ω) is an L×L matrix consisting of Sx
mn(ω) as

the m,n-th element, Ss(ω) is an L×L diagonal matrix
consisting of Ss

q (ω) as its q, q-th elements, and B(ω) is
the L× L matrix given by

B(ω) = A¯D(ω) (6)

where ¯ denotes Hadamard’s (element-wise) product,
A is the constant matrix of mixing coefficients, whose
m,n-th element is amn, and D(ω) contains the delays,
such that its m,n-th element is given by

Dmn = e−jωτmn 1 ≤ m,n ≤ L. (7)

If the cross-spectral matrices Sx(ω) were known,
then by using (5) at several frequencies ω0, ω1, . . . ωK ,
a system of nonlinear equations could be formed, war-
ranting an exact solution for the unknown mixing pa-
rameters and sources spectra (under some regularity
conditions). In practice, however, these matrices are
unknown, but can be estimated from the available data.
A possible strategy for non-parametric estimates

of these matrices would be to use the Discrete-Time
Fourier Transform (DTFT) of a truncated series of un-
biased cross-correlations estimates (Blackman-Tuckey’s
method, e.g., [9]). Specifically, to estimate the m,n-th
element of Sx(ω), the following can be used:

Ŝx
mn(ω) =

M
∑

l=−M

R̂mn[l]e
−jωl (8)

where

R̂mn[l] =
1

N − |l|

N−|l|
∑

p=1

xm[p+ l]xn[p] −M ≤ l ≤M.

(9)
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and M is the truncation-window length. If M is larger
than the sum of the longest correlation length (among
all source signals) and the maximal delay, then these
are unbiased estimates of the desired (cross-) spectra.
Note that in the transition from continuous time

to discrete time, the frequency axis is rescaled to the
range −π : π, resulting in some constant (and irrele-
vant) scaling of the estimated spectra. However, if, as
assumed earlier, the sampling rate is higher than the
Nyquist rate, then there’s no loss of information, and
the only distortion is in the scaling. Consequently, the
estimated delays will later have to be translated from
sample units to time units via multiplication by T .
When estimated values, rather than true values, of

Sx(ω) are used, the equations (5) usually can no longer
be satisfied simultaneously at all frequencies. Never-
theless, once Sx(ω) is estimated at several frequencies
ω0, ω1, . . . ωK , an estimate of the unknown parameters
of interest can be obtained by resorting to approximate
joint diagonalization (see e.g. [8, 4]), seeking to mini-
mize the following least-squares (LS) criterion:

min
A,T ,Γ

CLS
4
=

K
∑

k=0

||Sx(ωk)−B(ωk)Ss(ωk)B
H(ωk)||

2
F

(10)
where T is an L × L matrix containing the delay pa-
rameters τmn, Γ is an L × (K + 1) matrix containing
the sources’ spectra,

γmk = Ss
m(ωk) 1 ≤ m ≤ L 0 ≤ k ≤ K (11)

and || · ||2F denotes the squared Frobenius norm. Note
that it is also possible to use a weighted LS criterion
by introducing some positive weights wk into the sum;
however, to simplify the exposition, we shall not pursue
this possibility in here.
Several algorithms exist for joint diagonalization of

sets of matrices. However, these algorithms assume a
fixed diagonalizing matrix B, rather than B(ωk) which
depends on the index k. In the next section we pro-
pose a modification (actually an extension) of an exist-
ing joint diagonalization algorithm, namely the AC-DC
algorithm [8], adapted to this minimization problem.

3. JOINT DIAGONALIZATION VIA THE

EXTENDED AC-DC ALGORITHM

The AC-DC (”Alternating Columns / Diagonal Cen-
ters”) algorithm [8] is an alternating directions mini-
mization algorithm, originally intended for the case of
a fixed diagonalizing matrix B. It alternates between
minimization with respect to (w.r.t.) Γ and minimiza-
tion w.r.t. each column of B separately. Having a
closed-form solution for a unique global minimizer in

each phase, it is guaranteed to converge (under some
mild assumptions) to at least a local minimum of the
LS criterion.

While in our case the matrix B is not constant,
it can be factored as in (6), so as to depend on two
constant matrices, A and T . As we shall show imme-
diately, it is possible to minimize w.r.t. each column of
A and T separately, thus adding another stage to the
iterative process.

The extended AC-DC algorithm therefore alternates
between minimizations with respect to:

• Γ (in the DC phase);

• each column of A (in the AC-1 phase);

• each column of T (in the AC-2 phase).

In each phase, the parameters that do not partici-
pate in the minimization are retained fixed at their last
value. Some intelligent initial guess should be used as
a starting point for all parameters.

3.1. The ”DC” phase

In the DC phase we wish to minimize CLS w.r.t. Γ,
with A and T fixed. Since the k-th column of Γ is the
diagonal of Ss(ωk), it participates only in the k-th term
of the sum in (10). Thus, in this case the minimization
can be decomposed into K + 1 distinct minimization
problems; Moreover, each of these minimization prob-
lems is linear in the unknown parameters, and thus
admits the well-known linear LS solution. Specifically,
note that each (k-th) term in the sum can be expressed
as

||Sx(ωk)−B(ωk)Ss(ωk)B
H(ωk)||

2
F

= [yk −Hkγk]
H [yk −Hkγk] (12)

where γk is the k-th column of Γ, yk
4
= vec{Sx(ωk)}

(vec{·} denoting the concatenation of the matrix’ columns
into one vector), and

Hk = (B(ωk)
∗ ⊗ 1)¯ (1⊗B(ωk)) (13)

where 1 denotes an L × 1 vector of 1-s, ⊗ denotes
Kronecker’s product, ¯ denotes Hadamard’s (element-
wise) product, and the superscript ∗ denotes conjuga-
tion (note that this expression is sometimes referred to
as the Khatri-Rao product of B∗ and B). The well-
known minimizer of the linear LS problem is

γk = [H
H
k Hk]

−1HH
k yk. (14)
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3.2. The ”AC-1” phase

We now wish to minimize CLS w.r.t. the l-th (l =
1, 2, . . . L) column of A, assuming the other columns,
as well as T and Γ, are fixed. Defining

S̃(ωk)
4
= Sx(ωk)−

L
∑

n=1
n6=l

Ss
n(ωk)bn(ωk)b

H
n (ωk), (15)

where bn(ωk) is the n-th column of B(ωk), we have
(using the fact that all Ss

n(ωk) are real-valued, being
the sources’ spectrum)

CLS =

K
∑

k=0

||S̃(ωk)− Ss
l (ωk)bl(ωk)b

H
l (ωk)||

2
F

=
K
∑

k=0

Tr

{

[

S̃(ωk)− Ss
l (ωk)bl(ωk)b

H
l (ωk)

]H

·

·
[

S̃(ωk)− Ss
l (ωk)bl(ωk)b

H
l (ωk)

]

}

= C̃ − Tr

{

K
∑

k=0

Ss
l (ωk)

[

S̃
H
(ωk)bl(ωk)b

H
l (ωk)+

+bl(ωk)b
H
l (ωk)S̃(ωk)

]

}

+

+ Tr

{

K
∑

k=0

Ss2
l (ωk)bl(ωk)b

H
l (ωk)bl(ωk)b

H
l (ωk)

}

= C̃ − 2

K
∑

k=0

Ss
l (ωk)b

H
l (ωk)S̃(ωk)bl(ωk)+

+

K
∑

k=0

(

bHl (ωk)bl(ωk)
)2

Ss2
l (ωk)

(16)

where C̃ is an independent constant. Observe now
(from (6)), that bl(ωk) can be written as

bl(ωk) = Λl(ωk)al (17)

where Λ(ωk) = diag{e
−jωkτ1l , e−jωkτ2l , . . . e−jωkτLl}.

Consequently, CLS can be further simplified,

CLS = C̃−2aT
l

[

K
∑

k=0

Ss
l (ωk)Λ

H
l (ωk)S̃(ωk)Λl(ωk)

]

al+

+ (aT
l al)

2
K
∑

k=0

Ss2
l (ωk). (18)

We can further decompose al into a scale a times a
unit-norm vector α (al = aα, such that αTα = 1),
thus reducing (18) into

CLS = C̃ − 2a2αTFα+ a4f (19)

where F is the Hermitian matrix

F
4
=

K
∑

k=0

Ss
l (ωk)Λ

H
l (ωk)S̃(ωk)Λl(ωk) (20)

and

f =

K
∑

k=0

Ss2
l (ωk). (21)

Differentiating (18) w.r.t. a and equating zero yields
either the solution a = 0 or

a2 = αTFα/f. (22)

Since F is Hermitian, (22) is real-valued. Thus, if (22)
is positive, then the minimizing a is the square root,
otherwise it is zero. Consequently, if F is negative-
definite, then minimization of CLS w.r.t. al is attained
by al = 0. Normally, however, this is not the case, and
substituting a2 back into (19) reduces the problem into
minimization w.r.t α of

CLS = C̃ − (αTFα)2/f (23)

subject to αTα = 1. The desired solution is attained
as the eigenvector of F associated with the largest (pos-
itive) eigenvalue.

3.3. The ”AC-2” phase

It is now desired to minimize CLS w.r.t. τ l, the l-th (l =
1, 2, . . . L) column of T , assuming the other columns,
as well as A and Γ are fixed. Since the dependence on
the delays τ l in only through Λl(ωk), it is evident from
(18) that CLS can be expressed as

CLS =
˜̃C − 2al

[

K
∑

k=0

ΛH
l (ωk)G(ωk)Λl(ωk)

]

al (24)

where ˜̃C is another independent constant, and the ma-
trix G(ωk) is defined as

G(ωk)
4
= Ss

l S̃(ωk). (25)

Differentiating w.r.t. τpl (for p = 1, 2, . . . L except
for p = l) and equating zero, we obtain the following
set of equations:

∂CLS

∂τpl
= −2j

L
∑

m=1

aplaml·

·

K
∑

k=0

ωk

(

gpm(ωk)e
jωk(τml−τpl)−

−gmp(ωk)e
−jωk(τml−τpl)

)

= 0

1 ≤ p ≤ L, p 6= l (26)

525



where aij and gij(ωk) denote the i, j-th elements of A
and G(ωk), respectively. This set of equations is to
be solved w.r.t. τ1l, τ2l, . . . τLl except for τll, which by
convention was set to zero.
We do not have an analytical solution to (26) for

the general case. However, if we reduce the discussion
to the case of L = 2 sensors and sources, and the fre-
quencies {ωk}

K
k=0 are chosen as

ωk = kΩ k = 0, 1, . . . K, (27)

(with Ω a selected constant), then this set reduces to:

K
∑

k=0

k
[

g21(kΩ)e
−jΩτ21k − g12(kΩ)e

jΩτ21k
]

= 0 (28a)

(for l = 1, p = 2), and

K
∑

k=0

k
[

g12(kΩ)e
−jΩτ12k − g21(kΩ)e

jΩτ12k
]

= 0 (28b)

(for l = 2, p = 1). To proceed, we now define ρpl
4
=

ejΩτpl , so that (28a,28b) can be written as

K
∑

k=0

k[gpl(kΩ)ρ
−k
pl − glp(kΩ)ρ

k
pl] = 0, (29)

which, after multiplication by ρK turns into a polyno-
mial of degree 2K in ρ. Using polynomial rooting and
selecting all unit-modulus roots ρ̂pl, yields all (possibly
numerous) stationary points of CLS w.r.t. τpl via

τ̂pl = Imag{log ρ̂pl}/Ω. (30)

Each of these candidate solutions can be plugged into
(24) for evaluation of CLS in order to select the mini-
mizing solution.
It is interesting to observe, that in the L = 2 case

the dependence of (26) on A vanishes, so that this
phase (AC-2) can be regarded an inseparable part of
the previous phase (AC-1), since minimization w.r.t.
both al and τ l can be attained simultaneously.

4. RECONSTRUCTION OF THE SOURCE

SIGNALS

While estimates of the mixing parameters (especially
of the delays) may be of prime interest in certain ap-
plications, it may often be desired to actually separate
the source signals. Using the estimated mixing param-
eters, this can be conveniently done in the frequency
domain.

Using the Discrete Fourier Transform (DFT) of the
observations, we obtain L length-N series,

yp[m] =

N
∑

n=1

xp[n]e
−j2π(n−1)m/N

p = 1, 2, . . . L m = 0, 1, . . . N − 1, (31)

Denoting by Â and τ̂kl the estimated mixing coeffi-
cients and delays, respectively, we construct matrices
D̂[m], whose k, l-th element is given by

D̂kl[m] =

{

e−j2πmτ̂kl/N 0 ≤ m ≤ N/2
e−j2π(m−N)τ̂kl/N N/2 < m ≤ N − 1

(32)
The sources can now be separated in the frequency do-
main using

z[m] =
[

Â¯ D̂[m]
]−1

y[m] (33)

where y[m]
4
= [y1[m]y2[m] · · · yL[m]]

T (assuming the in-
verse exists). Transferring back to the time-domain,

ŝp[n] =
1

N

N−1
∑

m=0

zp[m]e
j2πm(n−1)/N n = 1, 2, . . . N

(34)
where zp[m] is the p-th element of z[m]. Apart from
end-effects near n = 1 and n = N , ŝp[n] are recon-
structed versions of the sources sp[n], possibly with
arbitrary permutation, scaling and delay, due to the
inherent indeterminancies of the blind scenario.

5. SIMULATIONS RESULTS

In this section we present simulations results for two
experiments. In the first experiment we compare the
accuracy in estimating the delays to that of another
second-order statistics method proposed by Comon and
Emile in [5]. In the second experiment we present our
algorithm’s performance in terms of the attained sig-
nal separation (the residual signal to interference ratio
(SIR)).
For both experiments we used source signals gener-

ated as follows. Both signal were originally generated
at a sample rate 10 times higher then the eventual pro-
cessing sample rate, to enable fractional delays prior to
”sampling”. At the higher sample rate the signals were
first generated as first-order Auto-Regressive (AR(1))
processes with parameters 0.76 and 0.81 for the first
and second signals, respectively. The driving noise was
zero-mean unit variance white Gaussian noise. Then,
to enable subsequent decimation by 10 without alias-
ing, both signals were low-pass filtered to a maximum
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frequency of 0.7 · 2π/10 using a Kaiser-windowed filter
of 80 taps with window parameter β = 3.44. This pro-
vides for stop-band attenuation of about 40dB with a
transition band of about π/70 (see, e.g. [10] for Kaiser
windows). The signals were then delayed and mixed,
prior to subsequent decimation by 10.

For the first experiment we used as a mixing matrix
A =

[

1 1
1 1

]

, to enable comparison to the algorithm of
[5], which can only accommodate this mixing matrix.
Note also, that [5] implicitly uses the knowledge of this
mixing matrix, whereas our algorithm attempted to es-
timate these mixing parameters as well. The results in
terms of the mean squared error (mse) in estimating
the delays vs. the sample length N are shown in figure
1. Both algorithms used the same data, with 100 trials
for each sample length. The ”pulsation parameter” for
the algorithm of [5] was ω = 0.245. The true nonzero
delays were τ12 = 2.1, τ21 = 5.5.

For the second experiment we chose a non-singular
mixing matrix, A =

[

1 0.44
−0.71 1

]

, which, unlike the sin-
gular mixing matrix of the first experiment, enables
demixing at all frequencies (a singular matrix disables
demixing at least at frequency 0). The true nonzero
delays were τ12 = 4.2, τ21 = −6.7. In figure (2) we
present the residual SIR (averaged over 100 trials) vs.
the sample length. It is to be noted, that the accurate
estimation of delays significantly improves the attain-
able separation. For example, the performance in figure
2 may be compared to the separation attained when the
true mixture parameters are known, and the true de-
lays are only known up to their integer part (which can
be roughly deduces from cross-correlating the signals).
This SIR was measured empirically to be 34.5dB for
the first source and 23dB for the second (considerably
lower than our algorithm’s performance in figure 2.

Our algorithm was used (in both experiments) with
K = 10 matrices at 10 frequencies with Ω = 0.25 spac-
ing. We used the identity matrix as an initial guess for
the mixing coefficients, and the integer values of the
true delays as initial guesses for the delays. The ini-
tial guesses for the sources spectra were obtained as a
result of the first DC phase. Convergence was usually
attained within up to 15 iterations, depending on the
sample length N

6. CONCLUSION

We presented an algorithm for blind separation of pure-
delay mixtures with unknown delays and mixture coef-
ficients. The algorithm is based on approximate joint
diagonalization of matrices of estimated auto- and cross-
spectra. It uses an iterative alternating-coordinates
scheme to minimize w.r.t. the unknown source spec-
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tra (termed ”DC” phase), the unknown mixing coeffi-
cients (”AC-1” phase) and the unknown delays (”AC-
2” phase). We derived closed-form minimization for
the DC and AC-1 phases for the general case, but for
the ”AC-2” phase we only provided a solution for the
two sensors / two sources case.
The algorithm’s performance was shown to offer

considerable improvement, at least with respect to less
exhaustive methods, such as observing delays from the
cross-correlations, or using the second-order statistics
algorithm of [5]. However, many aspects of the attain-
able performance (for example, in terms of possibly op-
timal/adaptive frequency selection and proper weight-
ing of the LS criterion) are still under study.
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