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ABSTRACT

Guided by the principles of neural geometric ICA, we present
a new approach to linear geometric ICA based on histograms
rather than basis vectors. Considering that the learning pro-
cess converges to the medians and not the maxima of the un-
derlying distributions restricted to the receptive fields of the
corresponding neurons, we observe a considerable improve-
ment in separation quality of different distributions and a
sizable reduction in computational cost by a factor of 100
at least. We further explore the accuracy of the algorithm
depending on the number of samples and the choice of the
mixing matrix. Finally we discuss the problem of high di-
mensions and how it can be treated with geometrical ICA
algorithms.

1. INTRODUCTION

Independent component analysis (ICA) describes the pro-
cess of finding statistically independent data within a given
random vector. In blind source separation (BSS) one fur-
thermore assumes that the given vector has been mixed us-
ing a fixed set of independent sources. The advantage of
applying ICA algorithms to BSS problems in contrast to
correlation-based algorithms is the fact that ICA tries to
make the output signals as independent as possible by also
including higher-order statistics.

Since the first introduction of the ICA method by Jutten
and Herault [1] various algorithms have been proposed to
solve the blind source separation problem [2] [3] [4]. Most
of them are based on information theory, but recently geo-
metrical algorithms have gained some attention due to their
relatively easy implementation. They were first proposed
in [5] [6], and since then have been successfully used for
separating real world data [7] [8].

As shown in [9] the geometric update step requires the
signum function in the following way:
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Then the ��� converge to the medians in their receptive field.
Note that the medians do not necessarily coincide with the
maxima 	+*-,/.
*102 of the mixed density distribution on the
sphere as shown in figure 1. Therefore, in general, any algo-
rithm searching for the maxima of the distribution will not
find the medians, which are the images of the unit vectors
after mixing [9]. However with special restrictions to the
sources (identical super-gaussian distribution of each com-
ponent, as for example speech signals), the medians corre-
spond to the maxima [10].
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Fig. 1. Projected density distribution on the sphere of a
mixture of two Laplacian signals with different variances,
with the mixture matrix mapping the unit vectors 3 � to	+4657�8*1�9.
��: �;*1�< for = �>� .@? . (dark line = theoretical den-
sity function, gray line = histogram of a mixture of 10.000
samples)

2. THEORY

Given an independent random vector A�B�C �$DFEHG , which
will be called source vector with zero mean and symmet-
ric distribution, where C is a fixed probability space, andIKJMLON/P 	�QMRSQ-T
E- is a quadratic invertible matrix, we call
the random variable UVB � IXW A the mixed vector. The goal
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of linear ICA is to recover the sources and the mixing ma-
trix

I
from the given mixture U . At first, we will restrict

ourselves to the two-dimensional case, so let QO� ? .
So far in geometric ICA, mostly “neural” algorithms

have been applied [5] [6]. The idea is to consider the pro-
jected random variable

� B ����� U ���H	 U  where� B E
0��	��
� � D A

,
B �
� " J E 0�� � " � �K� �

� D � 
 .@?��! � D�� 
 .��! (2)

denotes the projection of E
0

onto the unit sphere A
,
, then

taking the angle and finally mapping modulo � . Two arbi-
trary starting values � ,/	 
 (.���07	 
  J � 
 .��! are chosen (usu-
ally the angles of the two unit vectors 3 , and 3 0 ) and are
then subjected to the following update rule:

���
	����� ���
	��1����!����	������� �!	����!�&���
	�������� (3)

Here ��� denotes a sample of the distribution of
�

, and = is
chosen such that the distance of �;�
	��� to ��� modulo � is
smaller than the distance for any other ���7	��� , ���� = . ��	���
is the learning rate parameter which has to converge to



.

Hence it makes sense to define the receptive field of the
“neuron” ���
	��� to be� �
	��� B � � " J � 
 .��! � " closest (modulo � ) to �;�
	��� � ' (4)

Note that since we are in two-dimensions the length of
� �
	���

is always � 0 .
As shown in [9], after convergence the neurons � �
	�� 

satisfy the geometric convergence condition:

Definition 2.1. Two angles  ,�.  0 J � 
 .��! satisfy the Geo-
metric Convergence Condition (GCC) if  � is the median of�

restricted to its receptive field
� � for = � � .@? .

Let the mixing matrix
I

be given as follows:

I B �"! 4657��	+*-,� 4657��	+*10�
��: �!	+*-,6 ��: �!	+*102$# ' (5)

Then the vectors 	+4657��	+*��<(.
��: �1	+*1�<��% satisfy the GCC; hence
we may assume that the above algorithm converges to these
two solutions, and therefore we have recovered

I
and the

sources A . The distribution on the sphere together with the
angles *1� is depicted in figure 2.

3. HISTOGRAM BASED ALGORITHM: FASTGEO

Using the geometric convergence condition (GCC), we know
that the neurons will converge to the medians in their recep-
tive fields. This enables us to compute these positions di-
rectly using a search on the histogram of

�
, which reduces

the computation time by a factor of about 100 or more. In
the FastGeo-algorithm we scan through all different recep-
tive fields and test GCC. In practice this means discretizing
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Fig. 2. Example of a two-dimensional scatter plot of a
mixture of two Laplacian signals with identical variances.
Dash-dotted lines show borders of the receptive fields.
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Fig. 3. Probability density function &(' of
�

from figure 2
with the mixing angles *�� and their receptive fields

� � for
= �K� .@? .

the distribution &(' of
�

using a given bin-size )+* 

and

then testing the �-, ) different receptive fields. The algo-
rithm will be formulated more precisely in the following:

For simplicity let us assume that the cumulative distri-
bution

� ' of
�

is invertible – this means that
� ' is nowhere

constant. Define a function. B � 
 .��! � D E
/10 � D  ,/	2/-!�  0 	2/-? ��	2/X� �

? 
(6)

where

 ��	2/- B � �43 ,' ! � ' 	2/X� =�� 0 !� � ' 	2/X� 	 = ���� � 0 
? # (7)

is the median of
� � � / � 	 = �K�� � 0 .5/ � = � 06 in � / � 	 = ��� � 0 .5/X� = � 0 6 for = �K� .@? .
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Lemma 3.1. Let / be a zero of . in � 
 .��! . Then the  �
	2/-
satisfy the GCC.

Proof. By definition,�  ,/	2/-!�  0 	2/-? � �
? .  , 	2/-!�  0 	2/-? � (8)

is the receptive field of  ,/	2/- . Since .H	2/-�� 

, the starting

point of the above interval is / , because

/ �  ,/	2/-!�  0 	2/-? � �
? ' (9)

Hence we have shown that the receptive field of  ,/	2/- is� / .5/ � � 06 , and by construction  ,/	2/- is the median of
�

restricted to the above interval. The claim for  0 	2/- then
follows.

Algorithm 3.2 (FastGeo). Find the zeros of . .. always has at least two zeros which represent the sta-
ble and the unstable fixpoint of the neural algorithm. In
practice we extract the fixpoint which then gives the proper
demixing matrix

I 3 ,
by picking /�� such that

&�' 	  ,/	2/��/�!� &�' 	  0 	2/��/� (10)

is maximal. For unimodal and super-gaussian source distri-
butions this results in a the stable fixpoint (see conjecture
6.7 in [9]). For sub-gaussian sources choosing /�� , with

&�' 	  ,/	2/��/�!� &�' 	  0 	2/��/� (11)

minimal, induces the demixing matrix. Alternatively, using
the result for the super-gaussian case, note that for unimodal
distributions  ,/	2/��/�!�  0 	2/��/�? � /�� � �

? (12)

and  ,/	2/��/�!�  0 	2/��/��� �? � /�� (13)

are the desired *�� .

4. ACCURACY

In this section we want to consider the dependence of the
FastGeo-algorithm on the number of samples after the bin-
size ) has been fixed. As seen in the previous section, the
accuracy of the histogram based algorithm then only de-
pends on the distribution of the samples U respectively

�
i.e. we can estimate the error made by approximating the
mixing matrix

I
by a finite number of samples. In the fol-

lowing we will give some results of test-runs made with this
algorithm.

When choosing two arbitrary angles *�� J � 
 .��!(. = �
� .@? for the mixing matrix

I
, we define * as the distance

between these two angles modulo � 0 . This will give us an
angle in the range between



and � 0 respectively


��
and � 
	� .

First let us consider the accuracy of the recovered an-
gles 
 * � � *1� � *���������������� �

, when varying the angle * for a
fixed number of samples. Choosing a mixture of two Lapla-
cian source signals with identical variances, figure 4 shows
a nearly linear decrease of the error 
 * with decreasing * .
The 95% confidence interval decreases similar to the stan-
dard deviation, i.e. both parameters provide a good estimate
for the error. Note that the mean of the error 
 * is very
close to zero.

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90
∆α

 [°
]

α [°]

Mean
Standard deviation
95% confidence interval

Fig. 4. Mixture of 1.000 samples of two Laplacian source
signals with identical variances. Plotted is the mean, stan-
dard deviation and 95% confidence interval of 
 * calcu-
lated from 100 runs for each angle * .

In order to show more precisely that 
 * is proportional
to * , we have plotted 
 * ,/* versus * in figure 5, which
should result in a horizontal line. Obviously the estimate
of the *1� with respect to * is good for a wide range of *
( * * � 
	� ) and gets only slightly worse for smaller values.
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Fig. 5. Same mixture as in figure 4, plotting 
 * ,/* versus* .

Varying the number of samples used for estimating the
angles *1� shows that with increasing number of samples the
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estimate enhances as denoted in figure 6. This fact is well
know in statistics and signal processing.
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Fig. 6. Mixture of two Laplacian source signals with identi-
cal variances for different number of samples. The standard
deviation of 
 * ,/* calculated from 100 runs for each angle* is plotted.

To get a relation between the error 
 * and the number
of samples, we plot for different * , the standard deviation
of 
 * versus the number of samples, see figure 7. From
the slope of the curve we see that the standard deviation of
 * is roughly proportional to Q 3��� , where Q denotes the
number of samples.
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Fig. 7. Dependence of standard deviation of 
 * with the
number of samples for estimating the *�� for three different
angles * � � 
 � , � 
 � and � 
 � . Note the logarithmic scale on
both axes.

The above results have been put together numerically in
table 1, where we chose following mixing matrix

I
:

I B �"! � 
 ' �
 ' � ��# ' (14)

Given is the standard deviation of the non-diagonal terms
after normalizing each column of the mixing matrix, so that
the diagonal elements are unity. For comparison, we also

calculated the performance index � , as proposed by Amari [11]

� ,�� G�
� �1, �� G��	�1, � 
 � � �� N��� � 
 � � � ������ �

G��	�1, � G�
� �1, � 
 � � �� N��� � 
 � � � ����� (15)

where � � 	 
 � ��H� I 3 ,������� G W2I
.

number of samples standard deviation index � ,
� ' 
(
(
 
 ' 
���� 
 ' �! 
� 
 ' 
(
(
 
 ' 
 � � 
 ' 
#"
� 
(
 ' 
(
(
 
 ' 
(
#" 
 ' 
��  

Table 1. Standard deviations of the non-diagonal terms and
the performance index � , with different number of samples.

In statistics, an often used technique for estimating the
error made by approximating a probability density function
(pdf) by a finite number of samples is the so-called con-
fidence interval, which is the interval around the estimate
obtained from a given number of samples such that the prob-
ability that the real value lies outside this interval is less than
a fixed error probability $ :� 	 � U �&%" �#')( �� ��� $ (16)

For estimating the median of a pdf, we refer to [12]:
Let "�,/.�'�'�'6.�" G be independent identically distributed (i.i.d.)
samples of the random variable U , such that "��

' " � *1, ,
then the estimated median %" of the samples is defined as",+!- �. if Q is odd or

,0 	�" + . ��" + . *1,6 if Q is even. For largeQ ( Q * ��/
), let 0 be the inverse of the cumulative standard

distribution of ���&10 and2 � � 
 . � � Q
? �43 Q

? 0 ' (17)

Then the confidence interval of %" is given by� "�,�* � .�" G 3 � 6 ' (18)

In our case, an approximated confidence interval can be cal-
culated by first running the algorithm and thus getting ap-
proximate angles *�� . Then use the above equations to get
confidence intervals for the samples of

�
restricted to the

corresponding receptive fields
� � .

5. HIGHER DIMENSIONS

In the above sections we have explicitly used two-dimensional
data. In real world problems, however, the mixed data is
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usually high-dimensional (for example EEG-data with 21
dimensions). Therefore it would be satisfactory to gener-
alize geometric algorithms to higher dimensions. The neu-
ral geometric algorithm can be easily translated to higher
dimensional cases, but a serious problem occurs in the ex-
plicit calculation: In order to approximate higher dimen-
sional pdfs it is necessary to have an exponentially growing
number of samples, as will be shown in the following.

The number of samples in a ball ��� 3 , of radius � on
the unit sphere A�� 3 ,�� E � divided by the number of sam-
ples on the whole A�� 3 , can be calculated as follows, if we
assume a uniformly distributed random vector.

Let � � B �
� " J E � � � " ��� � � and A � 3 , B �

� " J
E � � � " � � � � – referring to [13], the volume of ��� can be
calculated by

	�
  	 � � H� ��.� �0����
� (

� ' (19)

It follows for � * �
:

Number of Samples in BallQ � Q ����� � � ��� ����� ��� ������ ��� ��� � �Q
� ��� 3 , ( � 3 ,(

�� ��� 3 , ( � 3 ,(
� *1,

� ��� 3 , ��
(20)

Obviously the number of samples in the Ball decreases by
��� 3 , � if � ' � , which is the interesting case. To have the
same accuracy when estimating the medians, the decrease
must be compensated by an exponential growth in the num-
ber of samples. For three dimensions, we have found a good
approximate for the demixing matrix by using 100.000 sam-
ples, in four dimensions the reconstructed mixing matrix
couldn’t be reconstructed correctly, even with a larger num-
ber of samples.

A different approach for higher dimensions has been
taken by [14] and [8], where

I
has been calculated by using

� � � 3 , �0 projections of U from E � onto E 0 along the different
coordinate axises and reconstructed the multidimensional
matrix from the two-dimensional solutions. However, this
approach works only satisfactory if the mixing matrix

I
is

close to the unit matrix up to permutation and scaling. Oth-
erwise, even in three dimensions, this projection approach
won’t give the desired results, as can be seen in figure 8,
where the mixing matrix has been chosen as:

I �
�� � 
 
 ' / �
 � 
 ' �
 
 
 ' " �� (21)
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Fig. 8. Projection of a three dimensional mixture of Lapla-
cian signals onto the three coordinate planes. Note that the
projection into the "�, - " 0 -plane does not have two distinct
lines which are needed for the geometric algorithms.

6. CONCLUSION

We presented a new algorithm for linear geometric ICA
based on histograms, which is both stable and more effi-
cient compared to the neural geometric ICA algorithm. The
accuracy of the algorithm concerning the estimation of the
relevant medians of the underlying data distributions, when
varying both the mixing matrices and the sample numbers,
has been explored quantitatively, showing a rather good per-
formance of the algorithm. We also considered the prob-
lem of high dimensional data sets with respect to the geo-
metrical algorithms and discussed how projections to low-
dimensional subspaces could solve this problem for a spe-
cial class of mixing matrices.

Simulations with non-symmetrical and non-unimodal dis-
tributions have shown promising results so far, indicating
that the new algorithm will perform as well with almost any
distribution. This is the subject of ongoing research in our
group.

In the future, the histogram based algorithm could as
well be extended to the non-linear case similar to [8], us-
ing multiple centered spheres for projection on the surface
on which the projected data histograms could then be eval-
uated.

7. ACKNOWLEDGMENTS

This research was supported by the Deutsche Forschungs-
gemeinschaft (DFG) in the Graduiertenkolleg “Nonlinearity
and Nonequilibrium in Condensed Matter”. We also would
like to thank Christoph Bauer and Tobias Westenhuber for

353



suggestions and comments on the neural algorithm.

8. REFERENCES

[1] C. Jutten and J. Herault, “Blind separation of sources
- an adaptive algorithm based on neuromimetics archi-
tecture,” Signal Processing, pp. 1–10, 1991.

[2] P. Common, “Independent component analysis - a new
concept ?,” Signal Processing, vol. 36, pp. 287–314,
1994.

[3] A.J. Bell and T.J. Sejnowski, “An information-
maximization approach to blind seperation and blind
deconvolution,” Neural Computation, vol. 7, pp.
1129–1159, 1995.

[4] J.-F. Cardoso, “Blind signal separation: Statistical
principals,” Proc. IEEE, vol. 86, pp. 2009–2025, 1998.

[5] C. G. Puntonet and A. Prieto, “An adaptive geometri-
cal procedure for blind separation of sources,” Neural
Processing Letters, vol. 2, 1995.

[6] C. G. Puntonet and A. Prieto, “Neural net approach for
blind separation of sources based on geometric prop-
erties,” Neurocomputing, vol. 18, pp. 141–164, 1998.

[7] Ch. Bauer, M. Habl, E.W. Lang, C.G. Puntonet,
and M.R. Alvarez, “Probabilistic and geomet-
ric ICA applied to the separation of EEG signals,”
M.H.Hamza, ed., Signal Processing and Communi-
cation (Proc.SPC’2000), IASTED/ACTA Press, Ana-
heim, USA, pp. 339 – 346, 2000.

[8] C.G. Puntonet, Ch. Bauer, E.W. Lang, M.R. Alvarez,
and B. Prieto, “Adaptive-geometric methods: applica-
tion to the separation of EEG signals,” P. Pajunen and
J. Karhunen, eds., ICA 2000 Proceedings, pp. 273 –
277, 2000.

[9] Fabian J. Theis, Andreas Jung, and Elmar W. Lang, “A
theoretic model for linear geometric ICA,” preprint,
2001.

[10] A. Prieto, B. Prieto, C.G. Puntonet, A. Canas, and
P. Martin-Smith, “Geometric separation of lin-
ear mixtures of sources: Application to speech sig-
nals,” J.F.Cardoso, Ch.Jutten, Ph.Loubaton, eds., In-
dependent Component Analysis and Signal Separation
(Proc. ICA’99), pp. 295–300, 1999.

[11] S. Amari, A. Cichocki, and H.H. Yang, “A new learn-
ing algorithm for blind signal separation,” Advances
in Neural Information Processing Systems, vol. 8, pp.
757–763, 1996.

[12] Bosch, “Statistik-Taschenbuch,” Oldenbuch Verlag,
pp. 697–701, 1993.

[13] R.K. Pathria, “Statistical mechanics,” Butterworth,
Heinemann, pp. 504–505, 1998.

[14] Ch. Bauer, C.G. Puntonet, M. Rodriguez-Alvarez, and
E.W.Lang, “Separation of EEG signals with geometric
procedures,” C. Fyfe, ed., Engineering of Intelligent
Systems (Proc. EIS’2000), pp. 104–108, 2000.

354




