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ABSTRACT

In this contribution we review the mean field approach to
Bayesian independent component analysis (ICA) recently
developed by the authors [1, 2]. For the chosen setting of
additive Gaussian noise on the measured signal and Maxi-
mum Likelihood II estimation of the mixing matrix and the
noise, the expected sufficient statistics are obtained from the
two first posterior moments of the sources. These can be ef-
fectively estimated using variational mean field theory and
its linear response correction. We give an application to fea-
ture extraction in neuro-imaging using a binary (stimuli/no
stimuli) source paradigm. Finally, we discuss the possibil-
ities of extending the framework to convolutive mixtures,
temporal and ‘spatial’ source prior correlations, identifica-
tion of common sources in mixtures of different media and
ICA for density estimation.

1. INTRODUCTION

Independent component analysis (ICA) is an active research
field that has seen the development of many successful al-
gorithms for blind separation of source signals, for a review
see [3]. The algorithms have either been statistical based
upon maximum likelihood and information maximization or
have exploited higher-order moments information for per-
forming the source separation.

Bayesian methods are formally straight forward exten-
sions of maximum likelihood approaches, i.e. average over
the uncertainty of the model rather than optimizing model
parameters. Instead of just selecting point estimates accord-
ing to the maximum of the posterior densities, the Bayesian
paradigm takes into account the entire probability mass of
the posterior densities which, in turn, leads to better esti-
mates. However, the averages – which are often high di-
mensional – are analytically intractable and one thus has to
resort to Monte Carlo integration [4].
�
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An interesting alternative that has attracted much re-
cent interest in many areas of probabilistic modeling, e.g.
graphical models, is mean field theory (MFT). MFT covers
a range of approximate techniques where variational MFT
(often called ensemble learning in neural computation) is
the most widely used. Other more advanced methods are
linear response theory and TAP for densely connected sys-
tems and structured mean field methods such as belief prop-
agation and Kickuchi cluster variational approximations for
sparsely connected systems, see [5] for a review. Com-
mon to all MFT is that a – hopefully unimportant – part of
the correlations between the stochastic variables is ignored.
The resulting approximation is either written in terms of a
set of non-linear fix point (mean field) equations in the pri-
mal parameters, typically the posterior mean of the stochas-
tic variables, or in terms of the dual set of parameters as in
belief propagation. MFT also gives an estimate of the like-
lihood of the model, i.e. the probability of the observed data
given the model.

A number of authors have previously applied mean field
theory to ICA [6, 7]. We will briefly discuss the relation
of our contributions [1, 2] to these. Attias [6] uses a mix-
ture of Gaussian source prior in a maximum likelihood ML-
II setting, i.e. only average over the primary variables, the
sources, and estimating secondary level parameters; the mix-
ing matrix and noise by maximizing the likelihood of the
model. This gives rise to an Expectation Maximization (EM)
type algorithm. In our contribution we also use ML-II but
generalizes the analysis to arbitrary source priors and fur-
thermore use linear response theory to give an improved
estimate of covariances (needed for estimating secondary
level parameters). Variational mean field trivially predicts
the covariances to be ���
	���	��������	��������� for ������ . This
has turned out to be important in hard e.g. very noisy prob-
lems. Miskin and MacKay [7] also introduces priors for
mixing matrix and noise. With their specific choices of pri-
ors they can give perform a full variational treatment within
the Bayesian paradigm at the expense of getting a somewhat
more involved system of mean field equations to solve. The
fully Bayesian framework should be advantageous in cases
where the distribution of secondary level parameters are not
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sharply peaked. However, these parameters which are typi-
cally assumed to be ‘time independent’ are often more well
determined than the sources. Linear response theory should
also be able to give improved second order statistics esti-
mates for this framework.

The rest of the paper is organized as follows. In sections
2-4, we discuss the model, the estimation problem and mean
field theory. We give an application to neuro-imaging in
section 5 and wrap up with an outlook and conclusion in
sections 6 and 7.

2. MODEL

In the simplest possible ICA-model the measured signal ���
at time � is assumed to an instantaneous linear mixing of the
sources corrupted with additive white Gaussian noise ������ ���
	��������� (1)

where � is a (time independent) mixing matrix and the
noise is assumed to be without temporal correlations and
with time independent covariance matrix � . The likelihood
for parameters and sources at time � is thus��� ����� ��������	���� ��� � ����� �
	����� �!� (2)

where � is shorthand for a multi-variate Gaussian distri-
bution. The likelihood for the entire set of observations,� �#"$���&% , is simply obtained as the product

��� �'� ��������	(� � )*�,+.- ��� ����� �����/��	����!0 (3)

The aim of independent component analysis is to recover
the unknown quantities: the sources 	 , the mixing matrix� and the noise covariance � from the observed data us-
ing the further assumption of statistical independence of the
sources

��� 	���� �21'34 +.- ��� � 4 �5� and
��� 	(� �61 � ��� 	���� .

3. SUFFICIENT STATISTICS

Under a quadratic loss, the Bayes optimal estimate of the
sources is the posterior mean �7	 � , where we have denoted
an average over the posterior��� 	�� ���&����� � � ��� �'� �����/��	(� ��� 	(���� �'� ����� � (4)

by angle brackets ��8 � . A valid criticism of the statistical
approach is that it requires knowledge of

��� 	(� which is
usually not available. However, in practice it turns out that
the detailed form is not very important (but rather whether
the prior is sub- or super-Gaussian). Secondly, within the

Bayesian maximum likelihood II (MLII) approach, the like-
lihood ��� �'� ����� � �69;:<	 ��� �'� �����/��	(� ��� 	(� (5)

can be used for model selection between different priors and
data analysis models such as Bayesian PCA. We can thus let
the data decide which prior is the appropriate for the data.
In a fully Bayesian approach one should rather average over
different possible priors. Here, we will limit the averaging
to the first level of parameters, i.e. the sources.

Maximum likelihood II (MLII) estimation of � and � ,
i.e. maximizing the likelihood

��� �'� ����� � leads to [1]

�/=�>@?,? �BA � �����7	�� ��CED�A �,F �7	�� F 	C� F �HG�I
-

(6)

�J=�>@?,? � KLMA � � � ���.NO�
	��� � ���.NO�
	��5� C �!0 (7)

The sufficient statistics of the model is thus the first and
second moments of the sources. Further non-negativity con-
straints on � relevant for e.g. feature extraction in images
(see section 5) and text mining can be enforced via La-
grange multipliers [1].

One advantage of the Bayesian approach compared to
maximum a posteriori (MAP)	=�PRQ��TS@U&VXW�SZY[ ��� 	�� ���&����� � (8)

is that we take correlation of sources into account, i.e. com-
pare eq. (6) with the extremum of

��� 	�� ���&����� � . Another
advantage is that we straightforwardly can deal with any
kind of variables, e.g. discrete or non-negative. We will give
an application to binary variables in section 5.

The clear disadvantage is that the sufficient statistics
cannot be obtained analytically apart for the Gaussian case
which is not relevant for instantaneous ICA mixtures. Mean
field theory – as presented in the next section – represents
a powerful alternative to the most general approach, Monte
Carlo integration.

4. MEAN FIELD THEORY

In a standard variational mean field theoretic approach, the
posterior distribution,

��� 	�� ���&�����\� is approximated in a
family of product distributions ] � 	(� � 1 4 � ] � � 4 ��� . For
the Gaussian likelihood

��� �'� �����/��	(� , we set [1]] � � 4 ���!^ ��� � 4 ����_ Ia`b$cedf7g bdfih�j dfkgZdf 0 (9)

We can simplify the notation by writing��� ����� ��������	���� � ��� ����� lm�&n(����	��5�!^T_ Io`b [Xpf<q [ f hr pf [ f �

440



where the interaction matrix l and the field n�� are given byl � � C � I - � (10)n(� � �/C�� I - ���!0 (11)

The starting point of the variational derivation of mean field
equations is the Kullback-Leibler divergence between the
product distribution ] � 	(� and the true source posterior, i.e.��� � 9;:<	(] � 	(��� �XV ] � 	(���� 	�� ���&����� � (12)

��� �XV ��� �'� ����� ��N�� �XV ��� �'� �����/�
	���m�!�
where

��� �'� �������
	���!� is the naive mean field approxi-
mation to the likelihood (see [1] for an explicit expression).
The Kullback-Leibler is zero when

� �6] and positive oth-
erwise. The parameters of ] should consequently be chosen
as to minimize

���
. The saddle points define the mean field

equations of which the two first yield� � � n(�.N � l
N���� S@V � l(�5���7	�� � (13)� 4 � ��� 4�4 � (14)

where ��� S@V � l(� is the diagonal matrix of l . The remaining
two equations ������ j df ��� and ������ cedf ��� depend explicitly
on the source prior,

��� �!� . The first define the variational
mean � �! 4 ��� � 4 ��� :
��� 4 � �#" =%$ �

&&  4 � � �XV�9;: � ��� �!��_ I `b$cedf7g b h�j df7g' � �! 4 ��� � 4 ���!� (15)

where ��8 � " =%$ denotes the variational mean field estimate
of the posterior mean. Since the variational distribution is
diagonal, the off-diagonal elements of the covariance matrix( � ' �7	��5	 C� �.N �7	�� ���7	 C� � (16)

estimates are zero. Using the condition ������ cedf �)� , we can
write the variational MF estimate of ( � as* " =%$4�4 F � �,+ 4�4 F � �! 4 ��� � 4 ���&  4 � 0 (17)

Eqs. (13), (14) and (15) define the variational mean field
equations. These can be solved by iteration together with
equations for � and � (using eq. (17)) in an EM-fashion,
see [1] for an algorithmic recipe.

We now turn to the derivation of the linear response
(LR) estimate of ( � . Notice that n(� acts as an external field
from which all moments of the sources can be obtained ex-
actly, i.e.

��� 4 � � �
& � �XV ��� ����� lm�&n(�5�&.- 4 � (18)* 4�4 F � �
&0/ � �XV ��� ����� lm�&n(���&.- 4 F � &.- 4 � �

& ��� 4 � �&.- 4 F � 0 (19)

If we in the second line instead use ��� 4 � � " =%$ , we get the

linear response estimate ( >21� ' �43 [ f65!72809� r pf [1]:

* >214�4 F � �
& � �! 4 ��� � 4 ���&  4 � &  4 �&.- 4 F �&  4 �&.- 4 F � ��+ 4�4 F N A4 F F;: 4 F F#<+ 4 � 4�4 F F * >214 F F 4 F � 0 (20)

This equation is (by construction) linear in ( >21� and can be
solved to give the linear response estimate of the covari-
ances: ( >21� � �>= ���Ol(� I - � (21)

where we have defined the diagonal matrix= � �?��� S@V �>@ -H����0�0�0� @ 3 ��� (22)@ 4 � ' A & � �! 4 ��� � 4 ���&  4 � B I - NC� 4�4 0 (23)

Now we can simply use eq. (21) instead of the variational
estimate eq. (17). In general we expect the LR estimate to
be better than the variational [1]. Obtaining the LR cor-
rection gives an additional complexity of D �iL�EGF � , whereL

denotes the number of time steps and
E

the number of
sources. This poses no computational problem for typical
applications. However, once convolutive models or priors
with correlations – as discussed below – are considered, the
increase in complexity can be prohibitively large.

5. FEATURE EXTRACTION IN NEUROIMAGING

The low signal-to-noise ratio and the many possible sources
of variability makes recordings from non-invasive functional
neuroimaging techniques a most challenging data analysis
problem. In this section we apply the proposed mean field
algorithm for noisy ICA with adaptive binary sources for
exploratory analysis of functional magnetic resonance imag-
ing (fMRI) data. The number of hidden sources is deter-
mined using the Bayesian information criterion (BIC) [8] in
which the naive mean field energy is used as an approxima-
tion to the likelihood.

The typical fMRI activation study consists of maintain-
ing a healthy volunteer in controlled mental states; typi-
cally a baseline control state and an active task state. The
temporal course of the baseline/activation paradigm is de-
noted the referencefunctionwhereas the regional hemody-
namic response to focal neuronal activation is denoted the
BOLD signal (blood oxygenation level dependent (BOLD)
contrast.

Bandettini et al. [9] analyzed the correlation between a
binary reference function and the BOLD signal. Lange and
Zeger [10] discuss a parameterized hemodynamic response
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adapted by a least squares procedure whereas multivariate
strategies have been pursued in [11] and [12]. Several ex-
plorative strategies have been proposed for finding spatio-
temporal activation patterns without explicit reference to
the activation paradigm. McKeown et al. [13] used the
independent component analysis algorithm of [14] to iden-
tify spatially independent patterns and found several types
of activations including components with “transient task re-
lated” response, i.e., responses that could not simply be ac-
counted for by the paradigm; such components would typ-
ically not be identified by a simple principal component
analysis (PCA) since they would tend not to be orthogo-
nal to the task. Other authors have argued for identifying
temporally independent patterns, e.g. [15]; a comparative
study of temporal and spatial ICA approaches for analyz-
ing fMRI were carried out in [16]. While previous ICA ap-
proaches succeeded in finding task related components, the
ICA schemes applied were not well-matched to the binary
on/off character of the stimulus (see also [16] for further dis-
cussion of this point). Hence, in this section we will focus
on the more appropriate binary source distribution assump-
tion. Furthermore, it is interesting to note that when analyz-
ing the signals for spatially independent components, the bi-
nary source assumption corresponds to another popular ap-
proach for exploratory analysis of fMRI, namely wave form
clustering. The binary spatial component can be viewed as
the binaryassociationof pixels with the corresponding time
course.

In this particular application we have restricted ourself
to consider binary " � � K % –sources parameterized by

� ��� 	;: ��� ��� ���
	 f	 � K N��
	k� - I ���
	 f � (24)

where �
	 is the mean of the binary sources which we also
estimate by MLII from the data. The details of the following
experiment can be found in [2]. In figure 1 we show in panel
(a) the log marginal likelihood as function of the number
of components for temporal ICA. A generative ICA model
with a single latent component is optimal in this case, and in
panel (b) we show the inferred posterior mean of the source
and the on-off binary reference function (with values 0 and
0.5 for clarity). The ICA time series shows a few scattered
activations and a large contiguous activation beginning ap-
proximately 3 seconds (10 scans) after stimulus onset. This
is consistent with typical hemodynamic delays found in pri-
mary visual cortex [17]. The spatial pattern associated to
the inferred source is presented in panels (c) and (d). In
(c) we show the 2.5 % most positive (white) and negative
(black) activation “hot spots” superimposed on an anatomi-
cal background which has the same spatial resolution as the
data. In panel (d) we provide a quantitative representation
of the spatial pattern. The spatial pattern is dominated by a
large cluster of pixels in the primary visual areas. We note
two relatively weak, but bilateral negative activations that

could be auditive regions that are processing audible scan-
ner noise when the subject is not attending to visual input,
as suggested in [16] for the same data set.

0 1 2 3 4 5
−2.01

−2.005

−2

−1.995

−1.99

−1.985x 10
6

lo
g 

p(
X

|I)

number of sources, I

(a)

0 20 40 60 80 100 120
0

0.5

1

1.5

<
S

>

scan number

(b)

(c)

−40

−20

0

20

40

60

(d)

Fig. 1. Analysis of a fMRI data set using temporal binary
ICA. (a) shows the log marginal likelihood as a function of
the number of hidden sources. At � ��� the log marginal
likelihood is calculated for a Gaussian with common vari-
ance. (b) shows the experimental paradigm (in solid) and
the inferred sources. (c) shows the .025 (black) and .975
(white) fractiles of the values in the eigenimage superim-
posed on an anatomical reference. (d) shows a quantitative
representation of the spatial pattern retaining only the 0.1
and 0.9 fractiles of the eigenimage.

In figure 2 we present the results of searching for spa-
tially independent components. In panel (a) we show the
log marginal likelihood with nine being the most probable
number of latent components. This is consistent with [13]
who found a high number of interpretable components us-
ing spatial ICA. In panel (b) and (c) we show the binary
images and the associated time series. The time series have
been globally post-normalized such that the maximal value
is 1. Notice that some of the binary images are mainly in the
off-state, while others are mainly in the on-state. In particu-
lar, two components (4 and 7) have strong responses which
are highly correlated with the stimulus. Furthermore, these
two component time series are active only in the expected
regions for visual stimulation. The weaker signals are con-
founds that are found globally (components 1,3,5,6,8,9) or
locally (components 2).
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Fig. 2. Analysis of a fMRI data set using spatial binary ICA.
(a) shows the log marginal likelihood as a function of the
number of hidden sources. At � � � the log marginal like-
lihood is calculated for a Gaussian with common variance.
The log marginal likelihood is the average of 30 random
parameter initializations. (b) shows the posterior mean of
the nine hidden binary images. (c) shows the corresponding
responses associated to each of the nine hidden images.

6. OUTLOOK

In this section we discuss a few extensions of the mean field
framework to other problems in the ICA domain:

Convolutive mixtures. The instantaneous mixing model
eq. (1) can be generalized to time-lagged models. Of special
interested is an time-trans- lational invariant mixing matrix���#: � F ����� I � F (with discrete time):

��� � � �������A� ���
	 � � �5	�� I � �������m� (25)

Formally this model fits within the mean field framework.
However, the coupling of different time will imply that the
coupling matrix l now is

E#L�� E#L
rather than

E�E
as in the instantaneous mixing case. This makes linear

response estimates difficult to obtain for e.g. speech analysis
where the time series are long. Even though the matrix can
be sparse, i.e. when �J������� is small, it can be necessary for
simplifying approaches. Another possibility is use a Fourier
representation [18].

Temporally and ‘spatially’ correlated source priors. An-
other model that can be treated within the mean field ap-
proach is the one which relaxes the usual assumption of sta-
tistical independence of the sources, thus putting the basic
assumption of ICA to the test in applications. The general
source prior that achieves this is

��� 	(��^ * 4 � � � � 4 �5����Y��
�� N K� A �#: � F 	 C� l�� 	 �� I �,F 	�� F�!" �

where � � �!� denotes the (typically non-Gaussian) single source

constraint and l�� 	 �� � is the time-translational invariant Gaus-
sian a priori source correlation. The source prior in this
model thus includes both non-Gaussianity (from the single
source constraint) and Gaussian inter correlations as well
as temporal correlations (i.e. when l � 	 �� � �� � for some�J� ��,� ).

The only additional complication comes from the ML-
II estimate of l�� 	 �� � for which we also need to estimate the
a priori source correlations �7	�5	 C� h � � �#	 coming from the
normalization of

��� 	(� . With respect to the computational
complexity of the linear response correction, this model has
same the problem as the convolutive mixture.

Both this approach and convolutive mixtures should be
well suited for tackling hard underdetermined source sep-
aration problems, e.g. one microphone source separation,
since contrary to instantaneous mixtures, temporal correla-
tion are modeled. It is thus possible to extract more infor-
mation using the more complicated model. We are currently
testing these approaches in underdetermined source separa-
tion.

Mixtures of media. The mean field framework can straight-
forwardly be applied to recovering sources in mixtures of
media, e.g. speech and images signals. This is a very inter-
esting truly multimedia problem.

ICA for density estimation. Since the Bayesian approach
gives an estimate of

��� �'� �����\� , Bayesian ICA can be used
for density estimation.

7. CONCLUSION

We have presented an easily implementable, stable and flex-
ible Bayesian mean field approach to independent compo-
nent analysis (ICA). Standard variational mean field theory
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is used in combination with linear response theory. The lat-
ter provides improved estimates of second order statistics
which are needed for ML-II estimation of the mixing and
noise covariance matrix. With this approach we have been
able to solve difficult source separation tasks for which the
variational mean field theory failed [1].

In our opinion, the ICA field could benefit from a ‘blind
test’ of the performance of algorithms. It is important to
identify which types of algorithms work for specific prob-
lem domains and what problems are hard. Quantitative per-
formance measures rather than often visual qualitative ones
should be developed.
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