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ABSTRACT
This paper presents two separate structures for the blind source
recovery (BSR) of stochastically independent signal sources. We
hypothesize linear state space models for both the mixing
environment and the demixing (i.e. recovering) adaptive network.
Separate algorithms for adaptive estimation of parameters for the
feedforward and feedback recovering networks have been
derived. Auxillay conditions for the convergence of these
algorithms have also been derived and discussed. Simulation
examples have been included to compare the results for both
algorithms for an IIR mixing environment. Conclusive remarks
about effectiveness of these techniques in various practical
problems have also been included.

1. INTRODUCTION
Blind Source Recovery (BSR), or Multi-channel Blind
Deconvolution (MCBD), is a practical adaptive filtering problem
formulation that combines Blind Source Separation and Blind
Source Deconvolution. Recently, Blind Source Recovery (BSR)
has been a very active research area in the arena of adaptive signal
processing and autonomous (or unsupervised) learning. The BSR
problem denotes recovering original sources from environments
that may include convolution, transients, and even possible
nonlinearity. BSR has several potential application domains
including e.g., wireless telecommunication systems, sonar and
radar systems, audio and acoustics, image enhancement and
biomedical signal processing (EEG/MEG, EOG, EMG, ECG
signals).

The state space notion provides a compact representation, which
is capable of handling both time delayed and filtered versions of
signals in an organized manner [2,3,5,6]. Unlike the transfer
function models, the state-space provides an efficient internal
description of a system. Moreover, there are various possible
equivalent state space realizations for a system, and thus recovery
of original sources can be achieved independent from (and even
in the absence of) environment identifiability, i.e. determining the
exact (or a specific function of) parameters of the environment.
There exist many adaptive network solutions (representations),
which succeed in recovering the original signals even in the
absence of precise identifiability [3,5]. The existence of solutions
that enable the recovery of original sources have been expressed
as recoverability [1,3]. The state space model enables much more
general description than standard finite/infinite impulse response
(FIR/IIR) convolutive filtering and all known filtering (dynamic)
models, like AR, MA, ARMA, ARMAX and Gamma filtering can
be considered as mere special cases.

Existence and constructions of a theoretical solution to the Blind
Source Recovery problem can be easily derived using the state

space, given a structure of the environment. The inverse for a state
space representation is easily derived subject to the invertibility of
the instantaneous relational mixing matrix between input-output −
in case this matrix is not square; the condition reduces to the
existence of pseudo-inverse of this matrix.

2. ALGORITHMS FOR LINEAR
DYNAMIC CASE

In the linear dynamic case, the environment models is assumed to
be of the state space form

( 1) ( ) ( )X k A X k B s ke e e e+ = + (2.1)

( ) ( ) ( )m k C X k D s ke e e= + (2.2)

In this case the feedforward separating network will attain the
state space form

( 1) ( ) ( )X k A X k B m k+ = + (2.3)

( ) ( ) ( )y k C X k D m k= + (2.4)

The existence of an explicit solution in this case has been earlier
shown in papers by Salam et. al. [1]. This existence of solution

Figure 2: State Space Demixing Network

Figure 1: State Space Mixing Environment
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ensures that the network has the capacity to compensate for the
environment and consequently recovers the original signals.

The derivation of BSR algorithm is setup as an optimization
problem subject to the constraints of multi-variable state space
representation and the calculus of variations. Kullback-Lieblar
divergence in the mutual information form is used as the
performance (“distance”) measure.
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where ( )H y is the entropy of signal y, given by
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Minimizing the performance functional
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subject to (2.3) and (2.4) with the initial conditions ko
X

The augmented cost functional to be optimized becomes
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Define the Hamiltonian as

1( ) ( )
k k

k k T
k kL y A X B mλ +Η = + + (2.9)

For the linear time-invariant case the, update laws are given by
[3,5]
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∆ = − = − = −
∂ ∂

(2.15)

The above derived update laws form a comprehensive algorithm
and provides the update laws for the states, the co-states and all
the parametric matrices in the state space. The invertibility of the
state space as discussed in [1] is guaranteed if the matrix D is
invertible. In the above derived laws

η - learning rate of the algorithm

[ ] TD −
- represents the transpose of the inverse of the matrix D if

it is a square matrix or the transpose of its pseudo-inverse in case
it is rectangular in structure.

( )yϕ - represents a nonlinearity acting individually on each

component of the output vector y, i.e.

( )

( )
( )

p y
y

y
p y

ϕ
∂

∂= − (2.16)

The update laws in (2.14) and (2.15) are similar to the gradient
descent results [3], indicating its optimality. The update law
provided above although non-causal, can be easily implemented
using some delay and memory storage in a manner similar to the
natural gradient implementation for MCBD problems. A delay in
the recovered signal is acceptable in the BSR problem as long as
the delay is fixed for every component recovered.

2.1 Feedforward Structure

We present a formal formulation for deriving the feedforward
update laws for the problem using the output equation (2.4) [5,7].
This leads to modified update laws for the matrices C and D.
Further, these new update laws have better convergence
performance as compared to (2.14) and (2.15). (Note: the
instantaneous time index k has been dropped for convenience)

Defining vectors y! and x! , and the matrix W! as

0

y m D C
y x W

X X I
= = =
     
          

!! ! (2.17)

where

y W x= !! ! (2.18)

The update law for this augmented parameter matrix W! is similar
in form to (2.15) or the stochastic gradient law for the static mixing
case.

( )T TW W y xη ϕ−∆ = −  ! ! ! ! (2.19)

since

0T

T

T

D
W

C I
=
 
 
 

! (2.20)

Consequently for the general case where D may not be square, its
inverse (assuming the pseudo-inverse for D to exist), we have

1

1

( ) 0

( )

T

T

T T

D D D
W

C D D D I

−
−

−
=

−

 
 
 

! (2.21)

Factoring out the augmented weight term
TW −! , (2.19) can be

written as

( ) T T TW I y x W Wη ϕ −∆ = −  ! ! !! ! (2.22)
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Post-multiplying by the matrix
TW W! ! , the update law becomes

( ) T TW I y x W Wη ϕ∆ = −  ! ! !! ! (2.23)

Using (2.18), we can write (2.23) as

( )
T

W I y y Wη ϕ∆ = − 
 

! !! ! (2.24)

Writing in terms of the original state space variables the update law
(2.24) is given by
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I IX
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(2.25)

considering the update laws for matrices C and D only
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D C
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I
η η ϕ ϕ∆ ∆ = −

 
     

(2.26)

therefore the final instantaneous update laws for the matrices C and
D are

( )( ) ( ( ( )) ( )) ( ) ( ( )) ( )T T
NC k I y k y k C k y k X kη ϕ ϕ∆ = − − (2.27)

( ) ( ( ( )) ( )) ( )T
ND k I y k y k D kη ϕ∆ = − (2.28)

The update laws for the natural gradient update derived in [3] are
in exact agreement with the update derived above. The update
laws in (2.27) and (2.28) are related to the earlier derived update
laws (2.14) and (2.15) by the relation

0 0M M M
TT TI C C C D I I

l l l
T T C D C DD C D D

 +     ∇ = ∇ = ∇          

! (2.29)

where

k kL L
l

C D

 ∂ ∂∇ =  ∂ ∂ 
(2.30)

gives the update according to normal stochastic gradient, the
conditioning matrix in (2.29) is symmetric and positive definite.

Examining the update of the remaining terms in augmented

weight matrix W! , we have

0 ( ) ( ) 0T TX y D X yϕ ϕ= ⇒ = (2.31)

Also

0 ( ) ( )T T
M MI I X y C X Xϕ ϕ∆ = = − − (2.32)

Rearranging terms, we have

( ) ( )T T
MX y C X X Iϕ ϕ+ = (2.33)

Using the relation (2.31), the condition (2.33) reduces to

( ) T
MX X Iϕ = (2.34)

The auxiliary relations (2.31) and (2.34) form supplementary
conditions for the convergence of the algorithm and are satisfied
in a stochastic sense upon convergence of the algorithm. These

conditions are in addition to the stability conditions for the
algorithm [3].

2.2 Feedback Structure

For the feedback case, the network equations are [7]

( 1) ( ) ( )X k A X k B y k+ = + (2.35)

( ) ( ) ( )z k C X k D y k= + (2.36)

Defining

( ) ( ) ( )e k m k z k= − (2.37)

the output of the feedback structure is given by

( ) * ( )ny k H e k= (2.38)

For simplicity, assuming nH I= , we have

( ) *( ( ) ( )) ( ) ( )y k I m k z k m k z k= − = − (2.39)

rearranging terms, we get

( ) ( ) ( ) ( )NI D y k C X k m k+ + = (2.40)

In matrix form, we can rewrite (2.40) as

0
N

M

I D C y m

I X X

+     
=     

    
(2.41)

or

1

0
N

M

I D Cy m

IX X

−+    
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(2.42)

Again, defining vectors y! and x! , and the matrix W! as

" " "and, ,
0

N

M

W
I D Cm y

X Y
IX X

=
+    

= =     
     

(2.43)

we have

" " " """1
WY X W X

−
= = where "" "

1
W W

−
= (2.44)

Using the natural gradient, the update law for ""W is

"" "" " " "" ""( )
T TT

W WW W Y Xη ϕ
− ∆ = −  

(2.45)

"" " " "" ""( )
TT

M N W WW I Y Xη ϕ+
 ∆ = −  

(2.46)

Differentiating """WW I= , we get

Figure 3: State Space Feedback Demixing Structure
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"" " """/ /
0W W WW+ = (2.47)

rearranging terms

"" """ " " " "/ / 1 1 / 1
W WW W W W W

− − −
= − = − (2.48)

Using 1st order Euler approximation for (2.48), we have

"" " " "1 1
( )W W W W

− −
∆ = − ∆ (2.49)

Also " " ""TT T
WY X= (2.50)

Using (2.49) and (2.50), the update law in (2.46) becomes

" " " " " ""1 1
( ) ( )

T

M NW W W WI Y Yη ϕ
− −

+
 − ∆ = −  

(2.51)

or

" " " " """1
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∵ (2.52)

Arranging terms
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Inserting values for "W and "Y , we have
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y y I y X
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η
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 − 

(2.54)

Therefore the update laws for the matrices C and D are

( ) ( )( ( ) ) ( )T T
N N NI D D I D y y I C X yη ϕ ϕ ∆ + = ∆ = + − + 

(2.55)

[( ) ( ) ( ( ) )]T T
N MC I D y X C X X Iη ϕ ϕ∆ = + + − (2.56)

Looking at the update of remaining terms in "W , we see that

110 ( ) T
NM N MX yϕ ×× ×= (2.57)

0 ( ) T
M MI X X Iϕ∆ = = − , or (2.58)

( ) T
MX X Iϕ = (2.59)

Notice similarity of (2.57) and (2.59) to (2.31) and (2.34). These
relations form supplementary conditions for the convergence of
the proposed feedback algorithm. Enforcing these conditions in
update laws (2.55) and (2.56) not only simplifies them
computationally, but also improves the convergence properties of
the proposed algorithm. The final update law for the feedback
structure is given by

( )( ( ) )T
N ND I D y y Iη ϕ ∆ = + −  (2.60)

[( ) ( ) ]T
NC I D y Xη ϕ∆ = + (2.61)

3. SIMULATION EXAMPLES
In this paper we are presenting simulation results for an IIR
mixing environment model. Both the mixing and demixing
systems are represented by MIMO canonical state space form. The
simulations are done for a variety of non-gaussian data
distributions, and the results compared.

The environment model used in these simulations is given by

1 1

0 0

( ) ( ) ( )
m n

i i
j i

A m k i B s k i v k
− −

= =

− = − +∑ ∑ (3.1)
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(3.2)

( )v k - Additive Gaussian noise

The theoretical inverse of this IIR mixing environment [1,6] will
also be an IIR filter of at least dimension 8.

The demixing network is setup to be in proposed feedforward and
feedback state space structures. In both the cases, the state
propagation matrices A and B are kept fixed while matrices output
matrices C and D are adaptively updated. The convergence
properties are discussed below. The benchmark employed for
comparison is the multi-channel intersymbol interference (MISI),
which is defined as

,

1 ,

,

1 ,

max

max

max

max

N pij p j pijj p

k
i p j pij

N pij p i piji p

j p i pij

G G
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G

G G

G

=
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−
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∑ ∑
∑

∑ ∑
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(3.3)

where G(z) – Global Transfer Function, given by

( ) ( )* ( )G z H z H z= (3.4)

and

( ) [ , , , ]e e e eH z A B C D= –Transfer Function of Environment

( ) [ , , , ]H z A B C D= –Transfer Function of Network,

We have used an element-wise acting nonlinearity which depends
on the batch kurtosis of the output of the state space network as it
converges. The algorithm is able to converge efficiently for both
super-gaussian and sub-gaussian source densities using this
function. The observed convergence rate is comparable to the cases
where an implicit non-linearity depending on the original source
distributions is employed. The nonlinearity, however, fails to give
fast convergence results for sources with densities close to
Gaussian. 4( ) ( ) tanh( )y y y yϕ κ β= + (3.5)

where

4 ( )yκ - batch kurtosis of the output signals
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For both simulations, the network is assumed to be in MIMO
controller form. The matrices A and B have the structure

1 2 1

0 0 0 0

,0 0 0 0

0

0 0 0 0

M MQ Q Q Q I

I

A BI

I

−− − − −   
   
   
   = =
   
   
      

$
$
$

% % % %
$

(3.6)

where the state space network/filter can be represented by

1( ) [ ( )][ ( )]H z P z Q z −= (3.7)

and

0 0

( ) , ( )
n n

i i
i i

i i

P z Pz Q z Q z− −

= =

= =∑ ∑ with 0 NQ I= (3.8)

3.1 Simulation for Feedforward Case

The matrix C is initialized with small random normally
distributed elements with a variance of 0.1. The matrix D is
initialized to be non-singular, dominantly diagonal (see Fig. 4).
The simulation results are shown in Fig. 5 after 50,000
instantaneous updates of both the matrices. For sub-gaussian
distribution, the learning rate is decreased exponentially with
increasing iterations to achieve both fast convergence and good
steady state value of the benchmark. For the gamma-distributed
sources, a relatively smaller learning rate was required to
achieve convergence.

3.2 Simulation for Feedback Case

For the feedback case, the matrix C is initialized with small
random normally distributed elements with a variance of 0.1.
The matrix D is initialized to be non-singular and dominantly

anti-diagonal (see initial global solution in Fig. 4). The
simulation results presented below in Fig. 6 show results after
60,000 instantaneous updates of both the matrices. These
simulations also employ exponentially decaying learning rates,
where relatively smaller learning rate were required for
convergence in case of gamma distributed sources.

4. CONCLUSIONS

This paper presents the simulated results for an IIR
mixing/filtering environment using our proposed feedforward
and feedback algorithms for BSR. We setup the problem in a
state-space framework and used an adaptive non-linearity
dependent purely on the statistics of the network output. We
showed that the algorithms are able to converge for a variety of
source distributions. Using the feedforward approach the
update of output matrices C and D is equivalent to learning
blindly about the zeros of the demixing network, similarly in
the feedback case, this update accounts for tuning the poles of
the demixing network. Therefore, a combination of the two
proposed approaches will be capable to do both. This is
currently being investigated and the results will be supplied in
future publications.

Relatively low-peaked gamma distributed sources, resembling
speech-like statistics, were chosen in above simulations. The
algorithm required relatively smaller learning rates for
convergence in this case as compared to uniform and bimodal
distributions, which account more for communication
problems.
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Figure 5: Results for Feedforward Formulation

Figure 6: Results for Feedback Formulation
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