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ABSTRACT

In this paper, a novel algorithm for separating
mixtures of multiple speech signals measured by
multiple microphones in a room environment is
proposed. The algorithm is a modification of an
existing approach for density-based multichannel
blind deconvolution using natural gradient adapta-
tion. It employs linear predictors within the coef-
ficient updates and produces separated speech sig-
nals whose autocorrelation properties can be arbi-
trarily specified. Stationary point analyses of the
proposed method illustrate that, unlike multichan-
nel blind deconvolution methods, the proposed al-
gorithm maintains the spectral content of the orig-
inal speech signals in the extracted outputs. Per-
formance comparisons of the proposed method with
existing techniques show its desirable properties in
separating real-world speech mixtures.

1. INTRODUCTION

In blind source separation (BSS), multiple independent
source signals are extracted from their linear mixtures with
little to no knowledge of the sources and the mixing sys-
tem. Numerous applications of BSS have been found in a
wide variety of fields, such as antenna arrays for wireless
communications, biomedical signal processing, seismic sig-
nal processing, passive sonar, and speech processing.
Many algorithms have been proposed for the instanta-

neous BSS problem in which the mixtures are spatial lin-
ear combinations of independent sources [1]. A more chal-
lenging problem involves mixtures that are spatio-temporal
in nature [2]-[12]. Algorithms for such situations can be
classified into two classes. One class of algorithms, termed
multichannel blind deconvolutionmethods, attempt to make
the system’s outputs both spatially and temporally inde-
pendent. The other class of algorithms, termed convolu-
tive BSS methods, attempt to perform separation without
specifically deconvolving the system’s outputs. The former
class of algorithms are only truly appropriate for situations
in which the source signals are spatially and temporally in-
dependent. Such is not the case for most acoustic source
signals.
This paper focuses on the blind separation of speech sig-

nal mixtures as measured in a room environment, or the
so-called “cocktail party problem.” In this case, we assume
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that there are m talkers and n randomly-located micro-
phones in the environment, where n ≥ m. Since speech
is temporally-correlated, convolutive BSS algorithms are
most appropriate for this task. Despite this fact, many re-
searchers have applied multichannel blind deconvolution al-
gorithms to speech separation tasks with moderate success
[4, 6, 7]. Such algorithms impose undesirable constraints on
the extracted output signals, however, causing their spectra
to be nearly equalized. Previously, three solutions to this
problem have been proposed:
1. Apply pre- and post-filters to the inputs and outputs,
respectively, of the separation system [8].

2. Employ a frequency-domain separation method that
applies independent separation systems to each input
signal frequency bin [9].

3. Employ a separation method that imposes no con-
straints on the individual temporal structures of the
extracted output signals [12].

The first solution relies on the similarities of the correlation
properties of the source signals to work properly. The sec-
ond solution creates the problem of permuted solutions in
the frequency domain that require additional temporal con-
straints to solve. The third solution can result in slightly-
increased reverberation in the extracted signals due to the
unconstrained nature of the separation system.
In this paper, we propose a new convolutive BSS algo-

rithm for separating speech signal mixtures. The proposed
algorithm modifies the time-domain natural gradient multi-
channel blind deconvolution method in [5, 7] by incorporat-
ing linear prediction filters on each of the extracted output
signals. These filters allow the output correlation proper-
ties of the extracted signals to match those of the individ-
ual speech signals while maintaining the good convergence
properties of the natural gradient updates. Numerical eval-
uations of the method show that it provides excellent per-
formance in real-world speech signal separation for a variety
of publicly-available data sets.

2. CONVOLUTIVE BLIND SOURCE
SEPARATION

2.1. Problem Formulation

In the convolutive blind source separation (BSS) task, m
source signals {sj(k)}, 1 ≤ j ≤ m, pass through an un-
known m-input, n-output linear time-invariant mixing sys-
tem to yield the n mixed signals {xi(k)}. Defining the vec-
tors s(k) = [s1(k) · · · sm(k)]

T and x(k) = [x1(k) · · ·xn(k)]
T ,
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we can represent the mixing process as

x(k) =

∞∑

l=0

Als(k − l), (1)

where {Al} is a sequence of (n×m) matrices which is the
impulse response of the acoustical environment. The matrix
sequence {Al} is not arbitrary and must satisfy the follow-
ing weak condition that is typically satisfied in practice:

The discrete-time Fourier transform A(ejω) of the
matrix sequence {Al} must be of rank m for all
|ω| ≤ π.

For this paper, ambient sensor noise is assumed to be neg-
ligible.
The goal of the convolutive BSS task is to calculate a

demixing system with a causal matrix impulse response
{Bl}, 0 ≤ l ≤ ∞ such that the outputs of this system
given in vector form by

y(k) =

∞∑

l=0

Blx(k − l) (2)

with y(k) = [y1(k) · · · ym(k)]
T contain estimates of the m

source signal sequences in {s(k)} without crosstalk. With-
out any a priori information about the temporal character-
istics of the source signals, such solutions have the form

yi(k) =

∞∑

l=0

δijεjjlsj(k − l) (3)

where δij is the Kronnecker impulse function, εjjl is the
impulse response of an unknown filter, and the assignment
j → i occurs without replacement. If such a solution is at-
tained, each output of the system in y(k) contains a filtered
version of a unique source signal in s(k).
The ability to solve the convolutive BSS task depends en-

tirely on the characteristics of the source signals {si(k)}. In
this paper, we shall employ a strong statistical assumption
that is often reasonable in speech separation tasks:

Each speech signal si(k) is statistically indepen-
dent of every other speech signal sj(l) for i 6= j
and for all k and l.

Algorithms that use this independence assumption to per-
form separation have shown a reasonable level of success
even in situations involving potentially-correlated source
signals. In addition, we shall assume that sampled ver-
sions of the speech signals have a non-Gaussian amplitude
density that approximately follows a Laplacian distribution
model given by

psi
(s) =

1√
2σi

exp

(
−
√
2|s|
σi

)
, (4)

where σ2i is the variance of the ith speech signal. This
assumption is well-motivated by statistical tests [13], and
its accuracy is less critical to the success of the separation
methods as a whole.
In the sequel, we shall assume well-behaved mixing condi-

tions that allow for approximate truncated implementations
of the causal demixing system, whereby (2) is replaced by

y(k) =

L∑

l=0

Blx(k − l) (5)

and L is a finite integer. Approximating linear systems by
truncated models is an oft-used procedure in signal process-
ing tasks, as it allows for practical adaptation procedures
for the matrices {Bl} to be developed. Such approxima-
tions shall not be discussed further in any great detail.

2.2. Relationship to Multichannel Blind Deconvo-
lution

Convolutive BSS is closely related to multichannel blind
deconvolution, a task that we now describe. The mixing and
separation systems for multichannel blind deconvolution are
identical to those in (1) and (2), respectively. Only the
assumptions regarding the source signals are different and
are as follows:

Each signal si(k) is statistically-independent of ev-
ery other signal sj(l) for both i 6= j and all k and
l as well as for i = j and all k 6= l.

In other words, the source signals {si(k)} are independent
of each other, and each signal is a sequence of independent
samples as well. With such an assumption, it is possible to
obtain a stronger separation result than (3), as given by

yi(k) = δijεjj∆j
sj(k −∆j) (6)

where ∆j is an integer delay value. If such a solution is at-
tained, each output of the system in y(k) contains a scaled,
delayed version of a unique source signal in s(k). This solu-
tion corresponds to a removal of both spatial and temporal
crosstalk in the extracted source signals.
The assumption of temporal independence is reasonable

in certain signal processing tasks that yield the mixing
model in (1). One such situation is in multiuser wireless
communications, where each si(k) corresponds to a modu-
lated bit sequence [14]. Temporal independence is clearly
not appropriate, however, for convolutive blind separation
of speech. Hence, algorithms for multichannel blind decon-
volution are not entirely appropriate for separating speech
signals, as they typically impose unnatural contraints on
the temporal structures of the extracted signals in y(k).
Despite this fact, many researchers have used multichannel
blind deconvolution procedures in convolutive BSS tasks
with some degree of success [6, 7, 8]. In the next section,
we modify such procedure to yield a new algorithm that is
better-suited to, and provide better performance in, convo-
lutive BSS tasks.

3. ALGORITHM DERIVATION

3.1. The Natural Gradient Algorithm for Multi-
channel Blind Deconvolution

The approaches developed in this paper are based on a
recently-developed algorithm for multichannel blind de-
convolution tasks. This algorithm employs a well-studied
and statistically-plausible criterion. It is computationally-
simple and has shown success in a number of deconvolution
tasks [5, 7]. For these reasons, the algorithm is a good
starting point from which to develop speech separation ap-
proaches.
This algorithm employs the following density-matching

criterion to perform separation:

J ({Bl}) =

−
∮
log | detB(z)|z−1dz−

m∑

i=1

E{log p̂si
(yi(k))} (7)
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where B(z) is the z-transform of the impulse response se-
quence {Bl}, p̂si

(yi) is a density model for the ith ex-
tracted source, and E{·} denotes statistical expectation.
While many interpretations can be given to this criterion,
Pham has shown that this cost function is, up to an ad-
ditive constant, proportional to the relative entropy of the
extracted output sources assuming the amplitude density
models p̂si

(yi) [15]. When each p̂si
(yi) matches the actual

amplitude density of each source, minimizing this criterion
corresponds to minimizing the mutual information of the
extracted source signals in y(k), which in the case of speech
mixtures corresponds to separated speech signals.
Having chosen a multichannel deconvolution criterion for

minimization, we now describe a procedure for adapting the
matrices Bl to minimize it. While a standard gradient ap-
proach could be used, gradient methods are known for their
slow convergence properties. In addition, it can be shown
[5] that the gradient of the criterion in (7) requires calcu-
lating the inverse of the impulse response of the multichan-
nel separation system B(z), a daunting task. Fortunately,
a modification of standard gradient-based procedures has
been developed that overcomes these two difficulties in the
multichannel blind deconvolution task. This modification,
termed the natural gradient by Amari [16], modifies the
standard gradient update by a linear transformation whose
elements are determined by the Riemannian metric tensor
for the assumed parameter space. Details regarding this
modification can be found in [5] and [17]. The resulting
coefficient updates for this natural gradient multichannel
blind deconvolution procedure are: for 0 ≤ l ≤ L,

Bl(k+1) = Bl(k)+M(k)
[
Bl(k)−f(y(k−L))uT(k−l)

]
(8)

y(k) =

L∑

l=0

Bl(k)x(k − l) (9)

u(k) =

L∑

q=0

BT
L−q(k)y(k − q) (10)

whereM(k) is a diagonal matrix of positive step sizes µi(k),
1 ≤ i ≤ m and f(y) = [f1(y) · · · fm(y)]

T is a vector non-
linearity function. For the cost function in (7), the corre-
sponding forms for each fi(y) are

fi(y) = −∂ log psi
(y)

∂y
. (11)

For example, the Laplacian density model in (4) yields the
identical nonlinearities fi(y) = sgn(y) when source scaling
is ignored.

3.2. Temporal Constraints in Convolutive BSS

Multichannel blind deconvolution is a special case of con-
volutive BSS in which particular temporal constraints are
placed on the extracted sources. For this reason, many re-
searchers have employed multichannel blind deconvolution
algorithms in convolutive BSS as a first attempt [6, 7, 8].
As we shall show, however, such methods are inappropriate
for the speech separation and require some modifications to
obtain best performance.
Both multichannel blind deconvolution and convolutive

BSS assume source signals that are independent of each
other; only the assumptions on the temporal structures of
the sources differ. In the former task, the sources are addi-
tionally assumed to be independent from sample to sample,

such that for any two samples s1 = si(k) and s2 = si(k− l),
the joint probability density function (pdf) of s1 and s2 is

ps1s2
(s1, s2) = ps1

(s1)ps2
(s2), (12)

where psi
(si) is the marginal p.d.f. of si for i ∈ {1, 2}. Mul-

tichannel blind deconvolution algorithms attempt to enforce
this temporal independence on the extracted output signals
{yi(k)}. The conditions being enforced can generally be
found by analyzing the stationary points of the correspond-
ing algorithm’s update equations. A stationary point of an
adaptive algorithm is a coefficient solution such that, on
average, coefficient values do not change from one update
to the next for statistically-stationary signals. A necessary
condition for a stationary point to exist in either multichan-
nel blind deconvolution or convolutive BSS algorithms is

E{Bl(k + 1)} = E{Bl(k)} (13)

for all l. Sufficient conditions for stationary points require
the analysis of the second-order properties of the algorithm
updates; see [11] for examples.
In the case of the natural gradient multichannel blind

deconvolution algorithm in (8)–(10), one can determine the
conditions on the output signal sequence y(k) such that
(13) holds assuming stationary source signal statistics. The
resulting conditions are

Iδl − E{f(y(k − L))yT (k − L− l)} = 0 (14)

which, in scalar form, become

E{fi(yi(k))yj(k − l)} = δijδl (15)

for all 1 ≤ {i, j} ≤ m and −∞ < l < ∞. Eqn. (15)
implies both spatial and temporal statistical independence
of the extracted output signals when such signals are non-
Gaussian and have zero mean and symmetric p.d.f.’s, so
long as fi(y) is a nonlinear function [12]. If fi(y) is linear,
then (15) implies that the extracted signals are uncorre-
lated, which is not sufficient to guarantee independence.
In convolutive BSS, one cannot assume that the signals

are temporally-independent. Speech signals maintain a cor-
related temporal structure due both to the acoustic proper-
ties of the vocal production system and the quasi-periodic
nature of voiced speech sounds. Hence, the temporal con-
ditions imposed by multichannel blind deconvolution algo-
rithms are undesirable and unnatural. Experiments with
the natural gradient multichannel blind deconvolution al-
gorithm in (8)–(10) for speech separation indicate that the
main artifact imposed by the temporal constraints is an
approximate “whitening” or spectral flattening of the ex-
tracted speech signals. While such speech is still under-
standable, it loses much of its realism and cannot be ex-
pected to be listenable for long periods. For these reasons,
we now explore modifications to that attempt to preserve
the temporal characteristics of the source signals in the ex-
tracted outputs.

3.3. Convolutive BSS Using Linear Prediction
Constraints

Now we propose a novel modification of the natural gradient
multichannel blind deconvolution algorithm in (8)–(10) to
control the correlation properties of the extracted signals.
This modified algorithm employs the following assumption
about the speech signals being extracted.
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Each speech signal si(k) can be approximately
modelled as the output of an autoregressive (AR)
system driven by a temporally-independent input
signal, such that

si(k) = −
M∑

j=1

dijsi(k − j) + pi(k), (16)

where dij , 1 ≤ j ≤ M are the coefficients of
the ith AR system and pi(k) is the temporally-
independent input sequence driving this system.

This assumption is well-justified by the statistical charac-
teristics of human speech. Speech can be modelled as a
temporally-correlated quasi-periodic signal. The autore-
gressive model in (16) is often used to represent the corre-
lation properties of speech in a number of tasks and speech
coding in particular. Thus, processing this speech by an
all-zero linear predictor removes a significant portion of the
redundancy in speech, one obtains a nearly-independent se-
quence of random samples [18].
With this assumption, we propose to modify the nat-

ural gradient multichannel blind deconvolution algorithm
as shown in Figure 1. The separation system is now de-
scribed by two subsystems, denoted as W(z) and D(z) in
the figure. The first subsystem is a multiple-input, multiple-
output system with an FIR matrix impulse responseWl(k),
0 ≤ l ≤ N , whereas the second system consists of m dif-
ferent FIR filters with coefficients dil = djl, 0 ≤ l ≤ M
with dj0 = 1, where the mapping j → i corresponds to
the permutation relationship between the ith source signal
pi(k) and the jth output signal yj(k) at convergence. Let-

ting Dl be a diagonal matrix whose diagonal entries are the
order-permuted filter taps djl, 1 ≤ j ≤ m, we can write the
impulse response of the entire separation system as

Bl(k) = Dl ∗Wl(k) (17)

=

M∑

j=0

DjWl−j(k). (18)

To develop the algorithm for adjusting each Wl(k), we
employ the multichannel blind deconvolution approach in
(8)–(10) to adjust the combined system impulse responseas

Dl∗Wl(k+1) =Dl∗Wl(k)+M(k)
[
Dl∗Wl(k)−f(y(k−L))

yT (k − L− l)∗Dl∗Wl(k)
]

(19)

y(k) = Dl∗Wl(k)∗x(k − l). (20)

Translating this update to the coefficientsWl(k) of the sep-
aration system requires defining the impulse response of the
inverse of D(z) as Dinv,l. Clearly, Dinv,l exists if each se-

quence dil corresponds to an FIR linear predictor, as such
systems are always minimum phase [18]. Applying this in-
verse system to both sides of (19) yields

Wl(k + 1) = Wl(k)+M(k)
[
Wl(k)−Dinv,l∗f(y(k − L))

yT (k − L− l)∗Dl∗Wl(k)
]
. (21)

Finally, the following approximation proves useful:

Dinv,l ∗ f(y(k − L))yT (k − L− l)

=

∞∑

i=0

Dinv,if(y(k − L))yT (k − L− l + i) (22)

≈
∞∑

i=0

Dinv,if(y(k − L− i)yT (k − L− l). (23)

The above approximation assumes that the extracted
speech signals are statistically-stationary over the predic-
tion interval, which is a reasonable assumption. With this
approximation, we obtain the coefficient updates as

Wl(k+1) =Wl(k)+M(k)
[
Wl(k)−g(k−L)uT(k−l)

]
(24)

g(k) = f(y(k − L))−
M∑

q=1

Dlg(k − q) (25)

u(k) =

L∑

q=0

WL−q(k)yD(k − q) (26)

yD(k) = y(k − L) +

M−1∑

q=0

DM−qy(k − q) (27)

y(k) = yS(k) +

M∑

l=1

DlyS(k − l) (28)

yS(k) =

N∑

l=0

Wl(k)x(k − l) (29)

where (24) uses the result of (23), (25) employs the au-
toregressive property of the inverse of any linear predic-
tion filter, (27) is a temporary expression used in (26),
and y(k) in (28) and yS(k) in (29) are shown in Fig-
ure 1. This algorithm is particularly simple, requiring
4mn(N + 1) + 3mM + m muliply/accoumulates (MACs)
at each time step to compute, or approximately four MACs
per adaptive filter coefficient when N ÀM .
To see why this algorithm is well-suited to speech sep-

aration, we return to Figure 1. In this block diagram,
Dinv(z) = D−1(z) is the system function for the speech

production model, and D(z) is given by

D(z) = ΦD(z)ΦT
. (30)

Thus, the overall system function from the independent
sample sequence p(k) to the system output y(k) is

C(z) = ΦD(z)ΦTW(z)A(z)D−1(z). (31)

The algorithm that we have constructed is, ignoring trun-
cation effects, identical to the multichannel blind decon-
volution algorithm in (8)–(10). Thus, at convergence, the
combined system function has the approximate form

C(z) ≈ ΦE(z), (32)

where E(z) is a diagonal matrix whose diagonal elements
are εjj∆j

z−∆j and Φ is a permutation matrix. Combining
(31) and (32), we obtain

D(z)ΦTW(z)A(z)D−1(z) = E(z). (33)
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Pre- and post-multiplying both sides of the above equation
by ΦD−1(z) and D(z), respectively, gives

W(z)A(z) = ΦD−1(z)E(z)D(z) (34)

= ΦE(z), (35)

where the last simplification follows from the diagonal na-
tures of D−1(z), E(z), and D(z). In other words, the out-
puts in yS(k) are exactly the speech signals in s(k), up
to scaling, order permutation, and arbitrary delay factors.
This solution is exactly what is desired; the speech signals
remain separated but not deconvolved.

4. SIMULATION RESULTS

This section compares the separation results of various con-
volutive BSS algorithms in several real-world acoustic BSS
tasks. The real-world signal mixtures used for these eval-
uations have been taken from data set made available by
several authors [8, 9, 10]. Three of the examples have
been recorded at a fs = 16kHz sampling rate represent-
ing wideband speech, whereas one example was recorded at
a fs = 12kHz sampling rate.
We compare the performances of the multichannel blind

deconvolution (MBD) algorithm in (8), the nonholonomic
convolutive BSS (NH-CBSS) algorithm in [12], and the
linear-prediction-based convolutive BSS (LP-CBSS) algo-
rithm in (24)–(29), in which all updates have been im-
plemented in block form using FFT-based fast convolution
methods. Each block-based update calculates the convolu-
tion terms using L-sample sums, so that all filter coefficients
are updated every L time instants. Similar block-based
methods have been used in other adaptive filtering tasks
[19]. To calculate the linear predictor coefficients for the
LP-CBSS algorithm, we used the lpc command in MAT-
LAB as applied to each of the measured mixtures. This
choice assumes that the spectral content of each mixture is
largely controlled by a dominant speech signal that is then
extracted at that particular system output. Successive re-
finements of the linear predictor coefficients could have been
calculated during adaptation but were avoided for complex-
ity reasons.
As for other algorithm parameters, the diagonal entries

of M(k) were chosen as

µi(k) =
µ0

L

(
β +

2L∑

p=L+1

yi(k − p)f(yi(k − p))

) (36)

where the constant β = 0.01 was used to avoid a divide-
by-zero condition. This “quasi-normalized” step size strat-
egy makes the updates scale-independent and generally im-
proves algorithm robustness. For all separation tasks, the
chosen filter lengths were L = N = 1024 and M = 50. Sev-
eral passes through each recorded segment–between 30 and
50–were allowed in order to achieve convergence of every
algorithm, with step sizes chosen µ0 = 1. Detailed conver-
gence rate studies are the subject of current efforts.
To evaluate each algorithm’s performance, we employed

a strategy based on identifiable signal content. First, tem-
poral portions of each recording were identified that only
contained a single source, and the variances of these por-
tions were computed. Let σ̂2ij correspond to the estimated
variance of source i in signal j from these portions. Next,
portions of each signal containing no sources were found to
estimate the noise powers ρ̂j for each channel. Then, the

signal-to-interference ratio (SIR) and signal-to-noise ratio
(SNR) for the jth channel were computed as

SIRj =
σ̂2jj − ρ̂j

σ̂2ij − ρ̂j

, SNRj =
σ̂2jj − ρ̂j

ρ̂j

, (37)

where i 6= j. In situations where one signal is persistently-
exciting and the other signal is intermittent, we only give
SIR and SNR values for the intermittent signal. In addi-
tion, we compute the power spectral densities (PSDs) of the
original and extracted signals to gauge the temporal effects
that each algorithm imposes on the extracted signals.
Table 1 lists the SIRs and signal-to-noise ratios (SNRs)

for the original and separated signals for four different two-
channel signal separation tasks. For comparison, we also
calculate the SIRs and SNRs produced by each authors’
proposed approach. Comparing these results, we see that
the multichannel blind deconvolution algorithm generally
does not provide the best separation results, and it can
fail to provide any reasonable amount of separation. The
nonholonomic and linear-prediction-based convolutive BSS
methods generally provide much better performance. In
fact, the LP-CBSS algorithm generally provided the best
performance in terms of both SIR and SNR, even as com-
pared to each author’s proposed method.
To gauge the listenability of each separation result, we

calculated the power spectral densities (PSDs) of the in-
put and output signals from the various algorithms. Shown
in Figure 2 are the corresponding PSD curves for the Lee
Number example. As can be seen, the MBD algorithm
tends to “flatten” the spectral content of the measured sig-
nals in the separated outputs, making the resulting signals
sound unnatural. By contrast, both the NH-CBSS and LP-
CBSS algorithms largely maintain the spectral contents of
the original signal mixtures. Moreover, the LP-CBSS al-
gorithm generally provided the best signal-to-noise ratios
of all methods, such that any environmental noise was not
significantly enhanced in the separated system’s outputs.

5. CONCLUSIONS

In this paper, we propose a novel convolutive BSS algo-
rithm that is specifically designed to separate mixtures of
speech signals as measured by multiple sensors. Employ-
ing linear prediction filters within the adaptive process, we
effectively translate an existing multichannel blind decon-
volution algorithm based on information-theory to the con-
volutive BSS task under a widely-assumed model for speech
production. Numerical evaluations indicate the abilities of
the approaches to separate two-channel speech signal mix-
tures recorded in real-world environments.
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Figure 2. Normalized power spectra of the (a) left
and (b)right signal channels in the Lee Number ex-
ample.

Table 1. Signal-to-interference and signal-to-noise
ratios in the numerical examples.

Original Author’s NG-MBD NH-CBSS LP-CBSS

Mixture Outputs Outputs Outputs Outputs

Lee Number

SIR (Left) 0.5 dB 21.0 dB 15.1 dB 16.9 dB 20.3 dB
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