
MONAURAL SEPARATION AND CLASSIFICATION OF MIXED SIGNALS:
A SUPPORT-VECTOR REGRESSION PERSPECTIVE

Sepp Hochreiter and Michael C. Mozer

Department of Computer Science
University of Colorado

Boulder, CO 80309�
hochreit,mozer � @cs.colorado.edu

ABSTRACT

We address the problem of extracting multiple independent
sources from a single mixture signal. Standard independent-
component analysis approaches fail when the number of
sources is greater than the number of mixtures. For this
case, the sparse-decomposition method [1] has been pro-
posed. The method relies on a dictionary of atomic signals
and recovers the degree to which various dictionary atoms
are present in the mixture. We show that the sparse-decom-
position method is equivalent to a form of support-vector
regression (SVR). The training inputs for the SVR are the
dictionary atoms, and the corresponding targets are the dot
product of the mixture and atom vectors. The SVR perspec-
tive provides a new interpretation of the sparse-decompo-
sition method’s hyperparameter, and allows us to general-
ize and improve the method. The most important insight
is that the sources do not have to be identical to dictionary
atoms, but rather we can accommodate a many-to-one map-
ping of source signals to dictionary atoms—a classification
of sorts—characterized by a known nonlinear transforma-
tion with unknown parameters. The limitation of the SVR
perspective is that it cannot recover the signal strength of an
atom in the mixture; rather, it can only recover whether or
not a particular atom was present. In experiments, we show
that our model can handle difficult problems involving clas-
sification of sources. Our model may be particularly use-
ful for speech signal processing and CDMA-based mobile
communication, where in both cases we have knowledge
about the invariances in the signal.

1. INTRODUCTION

Independent component analysis (ICA) [2, 3, 4] attempts
to recover multiple source signals that have been combined
into one or more mixture signals. Most ICA algorithms as-
sume that the sources are mutually statistically independent
and that mixtures are linear combinations of the sources.
Well known ICA methods like “infomax” [5], maximum

likelihood approaches [6], entropy and cumulant based meth-
ods [7, 8, 9] have the restriction that the number of source
and mixture signals must be equal. In many real world ap-
plications, only one mixture is available. For example, with
direct sequence code division multiple access (DS-CDMA)
mobile communication, signals from multiple users must be
extracted from a single mixture time series. Further, many
real world sound recordings (e.g., bird songs, music, traffic,
or listening devices used in espionage) use only one or two
microphones. Standard ICA approaches cannot be used in
these cases.

In contrast, the human auditory system is able to distin-
guish multiple sound sources from two mixtures—the ears.
It can even extract sources from monaural recordings. In
some cases, separation of signals is easy because the signals
occur in different frequency bands (e.g., bird songs and an
oncoming bus), but many times simple physical distinctions
are inadequate to recover the signals. Consider a perfor-
mance by a symphony orchestra. The conductor is able to
isolate individual melody lines, instruments, or even musi-
cians from the ensemble, whereas a naive audience member
will not. The difference between the conductor and the au-
dience member is the conductor’s knowledge and familiar-
ity with the sound patterns that constitute the performance.
One could even imagine that the conductor has a dictionary
of sound atoms—canonical or prototypical musical phrases
and timbres—and identification of components comes by
isolating the atoms from the mixture.

Several ICA approaches have adopted the idea of us-
ing a dictionary to extract multiple sources from fewer or
even one mixture [1, 10, 11]. The dictionary can be based
on primitive functions (e.g., Fourier bases, wavelet pack-
ages, or Gabor functions) [1], predefined based on prior
knowledge, or can be trained to fit the problem [12, 11].
Zibulevsky and Pearlmutter [1] specify not only a dictio-
nary, but also a prior that enforces sparseness—i.e., an ex-
pectation as to how many sources will be present simul-
taneously. All these approaches are restricted to mixtures
consisting of linearly superimposed dictionary atoms; this

498

restriction is necessary to avoid ambiguity in the problem.
In this paper we show that the sparse-decomposition

method of Zibulevsky and Pearlmutter can be reinterpreted
as � -support vector regression (� -SVR) [13], when there is
a single mixture and a Laplacian prior. The � -SVR anal-
ogy provides a novel interpretation of the sparse-decom-
position method’s hyperparameter that determines the de-
gree of sparseness. The analogy also allows one to view
the sparse-decomposition method as one member of a fam-
ily of similar algorithms. Most notably, the family includes
a variant of the sparse-decomposition method that allows
for nonlinear transformations of the sources before they are
mixed, and another nonlinear transformation in the process
of identifying dictionary atoms in the mixture.

Applications of the approach include speech recogni-
tion, where the dictionary consists of pretrained or typi-
cal speech waveforms [12], and DS-CDMA mobile com-
munication, where the dictionary consists of spreading se-
quences of the users. One benefit of the nonlinearities in-
corporated into the approach is that—as we will explain in
detail later—they can be used to achieve some degree of
invariance to irrelevant characteristics of the speech signal.
We demonstrate our approach with experiments using noisy
single mixtures and speech tasks.

2. SPARSE-DECOMPOSITION VIEWED AS � -SVR

In this section, we review the sparse-decomposition method
introduced in [1], focusing on the case of a single mixture
signal. We will also describe the relation between sparse
decomposition and � -support vector regression (� -SVR).

2.1. The Sparse-Decomposition Method

Denote the mixture signal by ������� , which—in the case
of speech—might correspond to a time series of � discrete
time steps. We assume a dictionary matrix, 	
�������� ,
whose columns consist of the � atomic signals of length� . We assume a generative process in which the mixture is
created by first choosing a set of dictionary atoms and then
combining them linearly with noise:

����	�������� �� � ��� �
�"!#� �$�&% (1)

where �&����� is a vector of weighting coefficients, one per
atom, �('*),+.-/%1032#4 is an � -dimensional i.i.d. additive
Gaussian noise vector, and

!5�
the 6 th atom in the dictionary.

See Figure 1 for an illustration of the generative process that
produces the mixture.

The goal of the sparse-decomposition method is to de-
termine the coefficient vector, 7� , that satisfies two proper-
ties: (1) � must be well approximated by 7� , and (2) 7� is

-6

-4

-2

0

2

4

6

0 200 400 600 800 1000 1200

-8

-6

-4

-2

0

2

4

6

0 200 400 600 800 1000 1200

-8

-6

-4

-2

0

2

4

6

8

0 200 400 600 800 1000 1200

-8

-6

-4

-2

0

2

4

6

8

0 200 400 600 800 1000 1200

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 200 400 600 800 1000 1200

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 200 400 600 800 1000 1200

+

-0.92

0.21

+ noise

0.69

0.31

Fig. 1. The data generation process for the sparse-
decomposition method. Atoms from the dictionary 	
are weighted by a nonnegative factor and added to-
gether with noise resulting in the mixture. The goal is
to recover the weights from the mixture.

sparse, i.e., it has elements of small magnitude. These two
properties are achieved by a Bayesian approach in which (1)
is the likelihood 8:9;�=<>�/%?	A@ and (2) is the prior 8:9B�C@ . Thus,
the approach tries to maximize the posterior8:9B�D<5�E%?	A@GFH8:9I�=<>�/%?	A@J8:9B�C@&%
where we use “ F ” because we omit the constant normal-
ization factor in the denominator of Bayes rule. Given the
Gaussian noise model, the likelihood is8:9;�K<L�/%?	A@MFONQP�RTS3UWVX 0 2 9;�YU$	D�C@ 2QZ\[
To enforce sparseness of the coefficients, a Laplacian prior
for � is used with]?�^] � �`_ �� ��� < �

� < we have:8:9B�C@GFaNQP�R�bLU �0 2]Q�^] �?c [
Consequently, the posterior is8:9B��<5�E%?	A@dF�NQP�RTS3UeV0 2 SJVX 9B�fU$	��C@ 2 �$��]Q�^] � ZgZK[

The maximum a posterior (MAP) solution, 7� , is ob-
tained by taking the log of the posterior, flipping its sign,
and ignoring irrelevant constant terms and factors, resulting
in the minimization problem7�h� argmin i �2 9;�fU$	��C@ 2 �$� _ �� ��� < �

� < [
By standard techniques, we can turn this unconstrained op-
timization problem into a constrained optimization problem
in which � is split into two vectors, �Cj and ��k . The MAP
solution l�7�mjn%57��kpo is

argmin i?qsr iut VX +"� j Uv� k 4uwh	 w 	x+"� j Uv� k 4KU� w 	 + � j Uv� k 4 �$�ny w + � j �=� k 4
s.t. -{z � j

� % � k
� z}|~% (2)

499

where � is the transposition operator, y is the vector of ones,
and | is an upper bound that can serve as an additional con-
straint on the solution (which was not part of the original
formulation by Zibulevsky and Pearlmutter). In the solu-
tion, 7� �(7� j U 7� k , allowing us to split the positive and
negative elements of � into two vectors.

We will show that this formulation has the same core
mathematics as � -support vector regression (� -SVR) [13].
We turn to a brief overview of � -SVR.

2.2. � -Support Vector Regression� -SVR is a supervised approach to regression in which we
are given training data l 9�� � %�� � @s% [u[u[%#9�� � %�� � @ o , where �

� ���� and �
�

is a scalar. The goal is to produce a function, � ,
such that � 9�� � @ closely approximates �

�
. In the linear for-

mulation of � -SVR, � 9�� � @g�����x%	� �
 ��� , where ��� ��� ,
�:��� , and � [% [
 denotes the dot product. � -SVR attempts to
obtain a “flat” function by minimizing

�2]�] 2 , but subject
to the constraint that the fit is good enough, as quantified by
the constraint < � � U��:9�� � @u<�������� � for all 6 . � is a measure
of how accurate the fit needs to be, or intuitively, a measure
of the noise in the data. The slack variables �

�
� - allow for

the fact that it may not be possible to find an � that satisfies
the � -accuracy criterion. However, to ensure that the devi-
ations are minimal, the optimization attempts to minimize
the magnitude of the slack variables as well; specifically,
the constrained optimization is over the objective function�2]�] 2 ��|&]�] � , where | determines the trade off between
the flatness of the function and the tolerance of prediction
errors.

It turns out that the � -SVR has an alternative but entirely
equivalent formulation in which each example 6 is assigned
a coefficient, �

�
, and � is defined with these coefficients:

�\� _ �� ��� �
�
�
�
. Consequently, �A9��C@g� _ �� ��� �

�
���
� %	�
 �

� . The �
�
for which �

�
��}- are called support vectors. In this

formulation, learning involves an optimization problem, to
search for the l 7�

� o that minimize�2 _ �� r � ��� �
�
� � ���

� %	� �
 U _ �� ��� � � �
� � �3_ �� ��� < �

� <
subject to U |ez �

� z | . To eliminate the absolute-value
function from the objective function, a standard technique
is used to split the �

�
into positive and negative components,� j

�
and � k

�
, where �

� � � j
� U � k

�
, resulting in the optimiza-

tion problem:

��� �i?qsr iut VX�+ � j Uv� k 4 w�� w � + � j Uv� k 4 U
� w + � j Uv� k 4 �$�ny w + � j �=� k 4

s.t. -hz � j
� % � k

� z}| (3)�� � j Uv� k �� � �}-:%
where the matrix � is formed with the �

�
as column vectors.

Rather than viewing the constant � as a free parameter of � ,

the degree of freedom provided by � is used to ensure the
second constraint,]?�Cj�Uv��kJ] � �~- , is satisfied. If the � is
set to zero, the constraint drops out of the above optimiza-
tion formulation.

2.3. The Relationship Between the Sparse-Decomposi-
tion Method and � -SVR

Consider data for an � -SVR consisting of � training exam-
ples. For example 6 , the input �

� �K��� is dictionary atom
!#�

, and the target for the example, �
�
, is the dot product be-

tween the mixture � and dictionary atom

!>�
: �

� ���;�E% !#�
 .
If we fix � �}- in this situation, optimization problem (2) is
identical to optimization problem (3) because the constraint]Q�mj�Uv��kn] � � - is eliminated in in (3).

The � -SVR formulation gives an interpretation to the hy-
perparameter � in the sparse-decomposition method. It is a
measure of the noise level in the data, and indirectly affects
the number of 7�

�
that are significantly non-zero. As depicted

in Figure 2, each example will have a target, �
�
, that either

lies inside or outside the � -tube. The closer a target �
�

is to
zero, the more nearly orthogonal is the mixture � to atom
!#�

, and the less likely atom 6 is to be present in the mixture.
Thus, the � -tube distinguishes atoms that are likely to be rel-
evant from those likely to be irrelevant. It turns out that any
example 6 lying outside the � -tube will have either 7�

� �f|
or 7�

� �\U | . In the sparse-decomposition formulation, 7�
�

indicates the degree to which a dictionary atom 6 is present.
In � -SVR, the parameter � can be nonzero, which ex-

tends the sparse-decomposition formalism. To include � in
the sparse-decomposition formalism implies that the corre-
lation coefficients �

�
have a nonzero mean. � is an approx-

imation for the mean and is estimated by the � -SVR as the
expectation over 6 of

! w� �vU ! w� 	d7�&U:� sign 9 7� @ . Although we
do not explore this possibility further in the present paper,
we conjecture that inclusion of � in the sparse-decomposition
method may be useful if the dictionary atoms share some
structure (e.g., if an atom corresponds to a time series which
ends the same way for many atoms) and the mixture also
contains this structure, resulting in �

�
that are consistently

greater than zero.

3. NONLINEAR FORMULATION

In the � -SVR framework, a nonlinear approximation for �
is possible by introducing a kernel function, 39�� � %	� � @ , in
the expression for � instead of the dot product �!�

� %	� �
 . In
matrix notation, � w � is replaced by the kernel matrix "
with #

�
� �$ 39�� � %	� � @ . The purpose of this kernel is to al-

low each vector % to be mapped into a new representational
space, call it the feature space, via a function & , where the
kernel is defined to be the dot product in the feature space:
 39�'3%�(E@d�)�!&�9�' @?%*&�9+(E@
 .

500

c = C+

x

x

x

x
x

x

x
x

x

x x
x

x
xx

x
xx

x
x

ε-

ε+
0

c = C-

x
x

x

y=x ST

S

i

i

>

>

i

i

Fig. 2. The linear � –support vector regression cor-
responding to the sparse-decomposition method.
Each “x” in the figure corresponds to a single
training example in the � -SVR model. The hori-
zontal axis is a one-dimensional depiction of the
input space, and the vertical axis is the target out-
put. The grey area, the � -tube, specifies the range
of target outputs that are not significantly differ-
ent from zero. The examples 6 that lie outside the� -tube will have < 7�

� <m� | .

In the following sections, we introduce two nonlinear
generalizations of the sparse-decomposition method. In both
cases, the nonlinearity involves the mapping of the dictio-
nary atoms

!#�
into a feature space. One can conceive of this

mapping as part of the generative process that turns a class
template into class instances (e.g., a canonical word into a
word spoken by a particular speaker at a particular rate).

3.1. Nonlinear Approximation of the Linear Correla-
tions

In the first nonlinear approach, we replace 	 w 	 by kernel
matrix " . Because of Equation (1), we can recover the
MAP coefficients 7� from coefficients, denoted 7� , obtained
from the MAP solution to the nonlinear problem:7��� + 	 w 	A4 k � " 7� U(+ 	 w 	A4 k � 	 w � %
where the “ � ”-sign indicates an approximation because �
and the noise vector � are present. 7� � � | or 7� � ��U |
indicates the presence of dictionary atom 6 in the mixture
(see Figure 3).

x
x

x
x

x

x
x

x x
x

x
xx

x
xx

x
x

-

x
x

x

x

x

-0
+ ε

ε

y

φ()Si

+κ

<

<

 = Cκ

 = Ci

i

Fig. 3. The nonlinear � -SVR. The dictionary
atoms

!#�
are mapped by & into a feature space.

transform
nonlinear

transform
nonlinear

transform
nonlinear

transform
nonlinear

-6

-4

-2

0

2

4

6

0 200 400 600 800 1000 1200

-8

-6

-4

-2

0

2

4

6

0 200 400 600 800 1000 1200

-8

-6

-4

-2

0

2

4

6

8

0 200 400 600 800 1000 1200

-8

-6

-4

-2

0

2

4

6

8

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200

-4

-3

-2

-1

0

1

2

3

4

5

0 200 400 600 800 1000 1200

-4

-3

-2

-1

0

1

2

3

4

5

0 200 400 600 800 1000 1200

+

-0.92

0.21

+ noise

0.69

0.31

Fig. 4. The data generation process with atom transfor-
mations. In contrast to the sparse-decomposition method
(see Figure 1) the atomic sources are transformed before
they get superimposed.

3.2. Transformed Atomic Sources

Each dictionary atom

!5�
is transformed by a mapping �

�
(from ��� into ���) before it gets superimposed with other
transformed atoms to generate the mixture (see Figure 4).
Equation (1) becomes

��� ��
� ��� �

�
�
� 9 !#� @���� [

Let � 9.	A@ be the transformed dictionary, that is the matrix
with vector components � � 9.	A@�� � � � � 9 !#� @ . We minimize

��� �
� 9 !#� @ w �fU �

� 9 !#� @ w �h9.	A@ � ��� � [
We assume �

�
is known except for a free parameter

�
, where

�
� 9�' @��
	39�'��* � @ . This implies that all �

�
stem from one

class of functions. Further we assume that functions from
this class do not change certain features of the original atoms.
The transformation is invariant with respect to a special fea-
ture vector, produced by & . That is,

&:9 � � 9 !#� @1@M� &:9 !#� @ [
Our goal is to approximate the mixture feature &:9;�A@ lin-

early by the atom features &:9 !5� @ in the feature space. Thus,
the mixture feature is assumed to be the weighted sum of
the atom features for atoms that are present in the mixture.
That can be formulated as

&:9;�A@G� �� � ��� �
�
&:9!� � 9 !#� @ @ � �� � ��� �

�
&:9 !#� @ [

The most notable fact is that the unknown transformations
�
�

are removed from our approximation problem. 7� � indi-
cates whether mixture � and atom

!5�
share the same features

or not: large 7� � implies that � and

!5�
are mapped to similar

(correlated) feature vectors.

501

4. EXPERIMENTS

4.1. Nonlinear Approximation of the Linear Correla-
tions

We use a dictionary consisting of 64 atoms of length 128, in-
terpreted as a periodic time series. The atoms vary in their
frequency and shape (e.g., sinusoidal, triangular, rectangu-
lar, and asymmetric triangular). On average we choose 4.5
dictionary atoms per mixture. The nonzero coefficients �

�
are randomly chosen from � - [V % V [- � � � U V [-/%uUg- [V � . We
added Gaussian noise with variance V [- to each mixture
component, added sinusoidal noise to the mixture with am-
plitude from � -/%1- [X � , and introduced phase shifts to each
atom (randomly 0-20 % of the period). The values for hy-
perparameters � and | are chosen through a validation set.
They are adjusted so that fewer than 0.5 sources fail to be
recognized per problem. By doing so, we place an upper
bound on false rejects (failing to detect sources that are
present). To evaluate performance, we measure false ac-
cepts (the number of sources detected that were not present
in the mixture).

The linear sparse-decomposition method leads to an er-
ror of 35.32. Table 1 shows the result for the nonlinear ker-
nel 39�'3%�(E@x� 9��g� '�� (E@ � with various values for 8 and
� . The nonlinear kernel leads to better results than the lin-
ear sparse-decomposition method. This demonstrates that
nonlinear kernels work even for linear problems.8��	� V -�
 V -� V -� V -�

2 35.14 35.21 35.23 35.23
5 35.22 35.20 35.23 35.23

10 35.30 35.20 35.22 35.23
20 35.25 35.14 35.21 35.23
30 35.40 35.19 35.21 35.23

Table 1. Average (over 100 trials) of wrongly detected
atoms for kernels 39�'3%�(E@d��9��g� '�� (E@ � .
4.2. Transformed Atomic Sources

4.2.1. Artificial Data

We consider the following class of componentwise transfor-
mations of the dictionary atoms: � �

� 9�' @�� � � < � � < ��� , which
produce components

� - . We note that the local variance
remains the same even if negative values are transformed
into positive values. To compute the local variance around
a point � with window � , we use9 X � � V @ k � _ � j��� � � k�� 9�� � U��� � @ 2 , where

�� ��� �\9 X � � V @ k � _ � j��� � � k�� � � . We used 3 different values
for � : 8, 10, and 20 (which we denote as conditions AV8,
AV10, and AV20).

We generated 100 dictionary atoms of length 1024. To
produce an atom we segmented the 1024 length vector into
random segments of length between 1 and 64. Each segment
consists of a scaled (from � Ug- [� %uUg- [X � � � - [X %1- [� �) periodic
function from the previous experiment. A constant between
� U � %?�	� � is added to each segment. Figure 4 depicts the
data generation process.

As the transformation, task 1 uses < � � < , task 2 uses ��2� ,
and task 3 uses < � � < � with ! randomly selected from � - [" %X [- � . For task 1, ��� "�[- , and for tasks 2 and 3, ���Y- [" .
The transformations are mixed as in previous experiment
and Gaussian noise is added with 0x� - [- V .

As in the previous experiment, we set parameters to
ensure a false reject rate below 0.4 sources per example.
The false accept rates are shown in Table 2. The linear
model—equivalent to the sparse-decomposition method—
failed. The nonlinear mapping by the local variance for-
mulas was able to extract the invariant and, therefore, to
classify an atom as being present or not.

linear AV8 AV10 AV20
task 1: � 2� failed 0.63 0.72 0.99
task 2: < � � < failed 5.41 7.38 failed

task 3: < � � < � failed 0.55 0.84 2.37

Table 2. Average (over 100 mixtures) number of wrongly
detected atoms for the linear sparse-decomposition method
(“linear”) and three different methods measuring the local
variance (AV8, AV10, and AV20).

4.2.2. Speech Data

We considered transformations which shift individual dic-
tionary atoms. As an invariant we use the power spectrum.
The dictionary entries are 5 spoken words (“hid”, “head”,
“had”, “hud”, and “hod”) spoken by 20 different speakers
(dictionary size is 100). The data was obtained from ar-
eas/speech/database/hvd/ in the AI-Repository at
cs.cmu.edu. The speech is sampled at 10kHz.

We did not restrict the shifts of the atoms. The coeffi-
cients �

�
are chosen from � - [X %1- [� � . The power spectrum is

obtained by using fast Fourier transformation with shifting
Hamming window of size 256. The 20 lowest frequencies
were set to zero. The additive Gaussian noise had standard
deviation of 0x� - [- " for task 1 and 0T� - [X for task 2.

We compared three methods: PS1 is the power spectrum
of the original mixture, PS2 is the power spectrum of the
mixture where absolute mixture values smaller than 0.05 are
set to zero, and PS3 is the power spectrum of the mixture
where absolute mixture values smaller that 0.1 are set to
zero. As in previous experiments, we set parameters to fix

502

the maximum false reject rate, to 0.64 for task 1 and 0.74
for task 2.

The linear approach completely failed to solve the task.
The false accept rate for the nonlinear power-spectrum trans-
formation is shown in Table 3, for the two tasks and the three
methods. Figure 5 shows an example of PS3.

linear PS1 PS2 PS3
Task 1 failed 1.82 1.72 1.50
Task 2 failed 5.06 4.82 5.10

Table 3. Average number of wrongly detected atoms for the
linear sparse-decomposition method (“linear”), and three
nonlinear transformation into the power spectrum (“PS1”
to “PS3”). The error values are an average of 100 mixtures.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 200 400 600 800 1000 1200
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200

Fig. 5. Example of method PS3, which detected six dictio-
nary atoms in the mixture, three correctly and three incorrectly.
Row 1: three dictionary atoms present (but shifted in time) in
the mixture. Row 2: the mixture before (left) and after (right)
noise is added. Row 3: the three wrongly detected atoms (of
100).

5. CONCLUSION

In this paper we reinterpreted the sparse-decomposition me-
thod for a single mixture as � -support vector regression (� -
SVR). The � -SVR analogy supplied a new view on the sparse-
decomposition method’s hyperparameter and allowed to in-
troduce family of similar algorithms of which the sparse-
decomposition method is one member. This family includes
methods that allow for nonlinear transformations of the sou-
rces before they get mixed, and another nonlinear transfor-
mation in the process of identifying dictionary atoms in the
mixture. One benefit of the nonlinearities incorporated into

the approach is that they can be used to achieve some de-
gree of invariance to irrelevant characteristics of signals. We
demonstrated our approach with experiments using noisy
single mixtures and a speech dataset.

Acknowledgments
This work was supported by the Deutsche Forschungs-

gemeinschaft (Ho 1749/1-1).

6. REFERENCES

[1] M. Zibulevsky and B. A. Pearlmutter, “Blind source separa-
tion by sparse decomposition,” Neural Computation, vol. 13,
no. 4, pp. 863–882, 2001.

[2] A. Cichocki, R. Unbehauen, L. Moszczynski, and E. Rum-
mert, “A new on-line adaptive algorithm for blind separation
of source signals,” in Proc. Int. Symposium on Artificial Neu-
ral Networks, ISANN-94, 1994, pp. 406–411.

[3] A. Hyvärinen, “Survey on independent component analysis,”
Neural Computing Surveys, vol. 2, pp. 94–128, 1999.

[4] C. Jutten and J. Herault, “Blind separation of sources, part I:
An adaptive algorithm based on neuromimetic architecture,”
Signal Processing, vol. 24, no. 1, pp. 1–10, 1991.

[5] A. J. Bell and T. J. Sejnowski, “An information-
maximization approach to blind separation and blind decon-
volution,” Neural Computation, vol. 7, no. 6, pp. 1129–1159,
1995.

[6] H. Attias and C. E. Schreiner, “Blind source separation and
deconvolution: The dynamic component analysis algorithm,”
Neural Computation, vol. 10, no. 6, pp. 1373–1424, 1998.

[7] S. Amari, A. Cichocki, and H.H. Yang, “A new learning
algorithm for blind signal separation,” in Advances in Neu-
ral Information Processing Systems 8, David S. Touretzky,
Michael C. Mozer, and Michael E. Hasselmo, Eds. 1996, pp.
757–763, MIT Press, Cambridge, MA.

[8] P. Comon, “Independent component analysis – a new con-
cept?,” Signal Processing, vol. 36, no. 3, pp. 287–314, 1994.

[9] J.-F. Cardoso and A. Souloumiac, “Blind beamforming for
non Gaussian signals,” IEE Proceedings-F, vol. 140, no. 6,
pp. 362–370, 1993.

[10] G. Cauwenberghs, “Monaural separation of independent
acoustical components,” in Proceedings of the 1999 IEEE In-
ternational Symposium on Circuits and Systems (ISCAS’99).
1999, vol. 5, pp. 62–65, IEEE.

[11] T.-W. Lee, M. S. Lewicki, M. Girolami, and T. J. Sejnowski,
“Blind source separation of more sources than mixtures us-
ing overcomplete representations,” IEEE Signal Processing
Letters, 1998.

[12] M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete
representations,” Neural Computation, vol. 12, no. 2, pp.
337–365, 2000.

[13] V. Vapnik, The nature of statistical learning theory,
Springer-Verlag, New York, 1995.

503

