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ABSTRACT

We apply a variational method to automatically determine
the number of mixtures of independent components in high-
dimensional datasets, in which the sources may be non-
symmetrically distributed. The data is modeled by clusters
where each cluster is described as a linear mixing of inde-
pendent factors. Because of the variational bayesian treat-
ment, this method can yield an accurate density model for
the observed data without overfitting problems. This allows
us also to identify the dimensionality of the data for each
cluster. The new method is applied to a difficult real-world
medical dataset and is successful in diagnosing glaucoma.

1. INTRODUCTION

In pattern classification, the performance of a method is of-
ten determined by how well it can model the underlying
statistical distribution of the data. Independent component
analysis (ICA) is an example for modeling non-Gaussian
structure, e.g., platykurtic or leptokurtic probability density
functions. In many applications of ICA, the form of the
source distribution (or equivalently the “non-linearity”) is
fixed and usually symmetric. Real data sets often contain
both super and sub-gaussian sources. These sources may be
skewed and therefore non-symmetric and they may appear
in clusters. Furthermore, the dimensionality within each
cluster could be different. In unsupervised classification,
one is interested in obtaining a close fit to the observed data
distribution without running into overfitting problems.

Clusters of data can be described by an ICA mixture
model [1]. Instead of assuming fixed source distributions
within the cluster we can use mixture of Gaussians [2][3] to
model non-symmetric sources. We use ensemble learning
[4] (a.k.a. variational method [5]) to tackle the problem of
finding number of clusters and number of sources in each
cluster, when modeling high dimensional data.

In this paper, we extend the mixture model of [5] and
ICA model of [4], and propose a mixture of undercomplete

non-symmetric ICA solution to describe the underlying dis-
tribution of small but high dimension dataset.

2. THEORY AND METHOD

Observations �������
	��������������� �������������! , are as-
sumed to be generated from one of " clusters with diagonal
gaussian noise #%$ and cluster mean &'$ .(*) ��	�+ , $ �.- $ �/# $10 �243$ (*)65 	7� 5 + 8 $ 0'9;: ) ��	�+ , $.<=$	?> - $ �/# $10 (*) <=$	 0A@�<=$	

(1)

Inside each cluster, observation �
	 is a linear combination
of B independent sources < $	 . To allow for non-symmetric
sources, the density of each is modeled by a mixture of C
gaussians (*)ED $F 	 0 � 24GHJI $F H : )ED $F 	 + K $F H ��L $F H 0 (2)

We also assume a zero mean gaussian density for ,�$M ,(*)6N $MOF 0 � : )6N $MOF + PQ�.R $F 0 (3)

Instead of the likelihood of the data
(*) �S+ T 0 ( T denote the

collection of the parameters), we aim to maximize the evi-
dence on the data

(*) � 0 . Introducing posterior probabilityU ) T 0 and using the Jensen’s inequality, log of the evidence
is lower bounded by

V W�X (*) � 0ZY[9 U ) T 0'\ 	 V W�X (*) ��	]+ T 0A@ T
> 9 U ) T 0 V W�X (*) T 0U ) T 0 @ T (4)
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repeatly introduce
U )65 	 0 , U ) < $	 0 , we arrive atV W�X (*) � 0 Y49 U ) T 0'\ 	 \ $ � U )65 	 0 V W�X

(*)65 	]+ 8 $ � 0U )65 	 0 @ T
> 9 U ) T 0'\ 	 \ $ � U )65 	 0'9 U ) <=$	 0 � V W�X (*) ��	�+ <=$	 ��T 0
> V W�X (*) < $	 + T 0U ) < $	 0�� @�< $	 @ T > 9 U ) T 0 V W�X (*) T 0U ) T 0 @ T (5)

finally,
V W�X (*) < $	 + T 0 is replaced asV W�X (*) <=$	 + T 0 � \ F V W�X (*)ED $F 	 + T 0 Y
\ F H U )�� $F 	 0 � V W�X : )ED $F 	 + T $F H 0 > V W�X I $F HU )�� $F 	 0�� (6)

to complete the expansion. Notice that
U )�� $F 	 0 is a short

form for
U )�� $F 	 � � 0 .

Learning is accomplished by functional maximization
of the lower bound of

V W�X (*) � 0 over
U ) T 0 , U ) < $	 0 , U )65 	 0

and
U )�� $F 	 0 . We need a separable posterior

U ) T 0
U ) T 0 � U )	� 0�
 $

� 
 M U ) & $MQ0 U )� $MQ0 U ) , $M'0

 F U ) R $F 0 U )�� $F 0�
F H U ) K $F H 0 U ) L $F H 0�� (7)

in order to obtain analytical solutions. Learning rule forU ) T 0 is in the Appendix.
Translational and scale degeneracy present in the model

as described by equation 1, 2 and 3. After each update
of
U ) I $F H 0 , U ) K $F H 0 and

U ) L $F H 0 , we rescale
(*) < $F 	 0 to

be zero mean and unit variances. Distribution of
U ) ,�$ 0 ,U ) R $F 0 and

U ) -?$ 0 etc. are adjusted accordingly. This re-
moves the above two degeneracy and speed up convergence.

Local maxima of
V W�X (*) � 0 exist since each cluster is

itself a mixture of (correlated) gaussians. For example, in
some solutions, two clusters may be regarded as one con-
taining one bimodal sub-gaussian source. This adversely
affects the effectiveness of identifying other sources. We
employ an index very similar to the Fisher’s discriminant� � + K���� K���+���� I �1L�� > I ��L�� (8)�

is computed for each pair of adjacent gaussians in
(*)ED $F 	 0

and
��� �

seems to be a good criteria to split the cluster.
By virtue of Central Limit Theorem, linear mixing of

arbitrary sources of finite variances would result in a near-
gaussian density. As a result, at the early stage of learning
when , $ is randomly initialized,

(*)ED $F 	 0 sometimes would
be driven to have only one single gaussian, especially when
the sources to be learned contain some near gaussian com-
ponents. This is discouraged by reinitializing the sources

when all but one of the gaussians die, while keeping the ,�$
unchanged.

To compare different models ! resulting from differ-
ent initial conditions, we compute their corresponding up-
per bounds " ) �S+ ! 0 (equations 5, 6) on the evidence

(*) � 0 .
" � \ 	 V W�X�# 	 > 9 U ) T 0 V W�X (*) T 0U ) T 0 @ T (9)

Where
# 	 is defined in equation 23. From " ) �S+ ! 0 we can

select the model ! with highest evidence.

3. EXPERIMENTS

3.1. Synthetic Data

In this simulation experiment, we mix sources of various
skewness and kurtosis, namely laplacian, uniform, gamma,
beta, generalized gaussian ( $&%('�) ) ��+ * + + 0 ), and rectified
generalized gaussian, to form 5 clusters in a 2 dimensional
space. Number of points in each cluster range from 200 to
400. 0.1% noise is added to the data. The model is ini-
tialized with 8 to 10 clusters. Most of the time a 5 clus-
ters solution is obtained. Subplots a) to e) of figure 1 show
the densities of the 10 sources recovered. We can see that
3 gaussians are adequate for most of the sources densities.
The mixture of gaussians (MOG) fit the source histograms
well. Discrepancy from the true distribution arises from ran-
domness in samples generation. Bottom row of the figure
draws the initial and final configuration. In the middle right
of figure 1, we plot the evolution of the evidence over it-
erations. Dips correspond to splitting of clusters, and large
jumps correspond to vanishing of some clusters. The aver-
age signal to noise ratio (SNR) for the mixed sources was
9 dB and the SNR for the recovered sources was on average
38 dB.

3.2. Dimensions Reduction

In this experiment, we embedded 3 clusters containing 2,3
and 4 sources respectively in a four dimensional space. Each
cluster has 250 data points and 1% of noise. Correct num-
ber of clusters and intrinsic dimension of each are obtained
in all trials of runs. The original and learned mixing matrix, ’s from one run are shown in Table 1. Besides columns
of , , the corresponding rows of

D $F 	 display negligible val-
ues for those ‘killed’ components. Signal to noise ratios
(SNR) for the mixed and recovered sources of each clus-
ter are listed in Table 2. The average SNR for mixed and
recovered sources are 5 dB and 22 dB respectively.

3.3. Medical Data Set Analysis: Glaucoma

To evaluate the unsupervised classification ability of the de-
rived learning algorithm on high dimensional data, we apply
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Fig. 1. Application of nonsymmetric undercomplete ICA to synthetic data. a) to e), histograms: recovered sources distribu-
tion; dashed lines: original probability densities; solid line: mixture of gaussians modeled probability densities; dotted lines:
individual gaussian contribution. Middle row right: Evolution of evidence as function of number of iterations. Bottom row
left: after 1 iteration; right: final solution.

it to a glaucoma data set. Glaucoma is a progressive optic
neuropathy with characteristic structural changes in the op-
tic nerve head reflected in the visual field [6]. Visual field
sensitivity test is hence commonly used in clinical setting
to evaluate glaucoma. The data vector is composed of the
52 visual sensitivities (measured in dB) over the visual field
and the patient’s age. Our dataset consists of 189 normal
fields and 156 glaucomatous fields, as defined by the pres-
ence of glaucomatous optic neuropathy (GON). We started
with 1 cluster and look for 20 or less sources. The most
stable solution consists of 2 clusters after some split and
deletion. Figure 2 shows the strength of the sources in the 2
clusters, and the density distribution of the leading sources.
It suggests 12 dimensions in cluster 1 and 6 dimensions in

cluster 2. When matching the 2 clusters to the unseen la-
bel GON (cluster 1=glaucoma, 2=normal), we get a true
positive rate (sensitivity) of 106/156=68% and a true neg-
ative rate (specificity) of 187/189=99%. The traditionally
used index GHT (glaucoma hemifield test) on the same data
yields a sensitivity of 67% and a specificity of 100%. Speci-
ficity of

��� ���
is desired in the glaucoma community. The

large difference between sensitivity and specificity occurs
because the glaucoma class contains large number of ‘nor-
mal looking’ examples, while the normal class data is rela-
tively pure. On the right of figure 2 are the grey scale plots
of values of column , � for the 2 clusters, mapped onto the
retina. It is interesting to see that the first principal source
for the glaucoma cluster indicates a contrast in visual sensi-
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Table 1. Original and learned mixing matrix , ’s for the 3 clusters in experiment 2
CLUSTER ORIGINAL , LEARNED ,

1

���
�
����� P��	� P P�� � P�� P�	� P
�	� P ����� P���� PP�� P���� P ��� P
�	� P��� P ��� P P�� � P�� P

��
�

���
�

��� P�� P�� ��� P�� ��� � ��� � �� ��� � � �	� ��� ��� ��� � ��� ��P� P�� � � � ��� � � �	� � � ���	� � �� P�� ��� � P�� ��� P�� ��� � P�� � �
��
�

2

���
�

�	� P
�	� P ��� P��� P���� P � ��� P����� P P�� P �	� P��� P ��� P ��� P
��
�

���
�
�	� � � � P�� P�P �	� ��� � ��� � ��	� ��� P�� P�P � ��� ��P � P�� � �P�� �OP P�� P�P ��� ��� �	� � ���� ��� � P�� P�P P�� ��� � P�� � �

��
�

3

���
�
����� P �	� P�	� P ����� P��� P ��� P�	� P ����� P

��
�

���
�

��� � � ��� ��P P�� P�P P�� P�P���	� � � ���	� � � � P�� P�P � P�� P�P� P�� � � ��� P�� P�� P�P P�� P�P��� � � ����� ��� � P�� P�P � P�� P�P
��
�

tivity between the upper and lower fields, while the normal
group shows a relatively uniform visual sensitivity.

4. DISCUSSION

In this paper, we have derived the learning rules for varia-
tional learning of mixture of undercomplete non-symmetric
ICA solution. Modeling independent source densities by
mixture of gaussians is not new. Here we extend the algo-
rithm to the multi-clusters case and study its use as unsu-
pervised classification. This is a combination of Ghahra-
mani’s variational learning of mixture of factor analysers
[5], Miskin and Lapalainen’s ensemble learning of ICA [4][3]
and Attais’ Independent Factor Analysis [2]. The proposed
model has been successfully applied on the glaucoma data
set to identify hidden sources and perform unsupervised clas-
sification. The discovered fields of regions for glaucoma
and non-glaucoma are supported by physiological evidence
since they are most commonly used by physicians to deter-
mine the disease.

Correctly identifying the number of sources in signal
mixtures have always been an important issue. In partic-
ular, different number of components may be identified for
each cluster. A common conventional way to obtain un-
dercomplete ICA solution is to perform complete ICA on

Table 2. Signal to noise ratio (SNR) of mixed and recovered
sources in experiment 2

CLUSTER MIXTURE (dB) RECOVERED (dB)���
� � ���� � �� ���

�A� ���
��� � ��Q���A� � �� � ���

PCA reduced data. Although some efficient methods (e.g.
[7]) have been proposed for performing undercomplete ICA
skipping PCA, there were no general guidelines on how
many sources to look for. This paper employs the auto-
matic dimensions reduction property of bayesian method to
identify the number of sources in undercomplete noisy ICA.
The use of arbitrary source densities allows us a flexible
linear model for data densities fitting. And the variational
bayesian treatment prevents us from over-learning.
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Fig. 2. Illustration for the 2 clusters solution on the glaucoma dataset. Left: standard deviation
) $ + , F + 0 of the sources. It

shows an intrinsic dimensions of 12 for cluster 1 and 6 for cluster 2. Middle: Density distributions for the first source of each
cluster. Right: grey scale visual fields map of , � .
[6] Kwokleung Chan, Michael Goldbaum, Pamela A. Sam-

ple, Te-Won Lee, and Terrence J. Sejnowski, “Com-
parison of machine learning and traditional classifier in
glaucoma diagnosis,” in 8th Joint Symposium on Neural
Computation. Institute for Neural Computation, UCSD,
May 19, 2001, vol. 11, to appear.

[7] S.-I. Amari, “Natural gradient learning for over- and
undercomplete bases in ICA,” Neural Computation,
vol. 11, no. 8, pp. 1875–1883, Nov 1999.

A. APPENDIX

Besides the mixture density (equation 1), sources < $	 (equa-
tion 2) and the mixing matrix ,%$ (equation 3) , we employ
the following priors on the parameters and hyper-parameters.

(*)�� $F 0 ��� ) I $F � �������
� I $F G*+ @�� ) I $F � 0 ��������� @�� ) I $F G 0�0(*) K $F H 0 � : ) K $F H + � � ) K $F H 0 ��� � ) K $F H 0�0(*) L $F H 0 ��� ) L $F H + 	 � ) L $F H 0 ��
 � ) L $F H 0�0 (10)

(*) R $F 0 ��� ) R $F + 	 � ) R $F 0 ��
 � ) R $F 0�0 (11)

(*) & $MQ0 � : ) & $M + � � ) & $MQ0 ��� � ) & $M'0�0(*)� $M 0 ��� )� $M + 	 � )� $M 0 ��
 � )� $M 0�0
 )65 + 8 $ 0 � 8 $(*)	� 0 ��� ) 8 � ����������8 3 + @�� ) 8 � 0 ��������� @�� ) 8 3 0�0 (12)

Where : ) � 0 , � ) � 0 and � ) � 0 are the Normal, Gamma and
Dirichlet distribution respectively. And we use the follow-
ing values for the hyper-parameter in the priors. � � ) &Q$M 0 �PQ��� � ) &Q$M'0 �4P�� P�PQ� , @�� ) 8 $ 0 � @�� ) I $F H 0 � P�� P�PQ� . � � ) K $F H 0 �PQ��� � ) K $F H 0 �;� , 	 � ) L $F H 0 �;��� �A��
 � ) L $F H 0 � P�� � , 	 � ) R $F 0 �

 � ) R $F 0 � P�� P�PQ� , 	 � )� $M 0 ��
 � )� $M 0 � P�� P�PQ� .

Using the separable posterior
U ) T 0 (equation 7) together

with the posterior on the hidden variables
U )65 	 0 , U ) < $	 0 andU )�� $F 	 0 , we perform functional maximization on the evi-

dence (equation 5 & 6) to obtain the following recursive
learning rules. Because of the choice of conjugate prior,
free-form optimization results in the same form of

U ) � 0 as(*) � 0 , but of different hyper-parameters. The only exception
is
U ) < $	 0 . U ) < $	 0 � : ) < $	 + � ) < $	 0 ��� ) < $	 0�0

� ) < $	 0 ���6, $�� # $ , $��>������ X ) \ H U )�� $F 	 0 � L $F H � 0� ) � ) <=$	 0�0 � ) <=$	 0  F � ���6, $�� # $ ) ��	 � - $10 � � F> \ H U )�� $F 	 0 �"! $F H K $F H � (13)

496



� ) K $F H 0 ��� � ) K $F H 0 > \ 	 U )65 	 0 U )�� $F 	 0 � L $F H �
� ) K $F H 0 � 2 	 U )65 	 0 U )�� $F 	 0 � L $F H D $F 	 �

� ) K $F H 0 (14)

	 ) L $F H 0 ��	 � ) L $F H 0 > �� \ 	 U )65 	 0 U )�� $F 	 0

 ) L $F H 0 ��
 � ) L $F H 0 >�� \ 	 U )65 	 0 U )�� $F 	 0 � )ED F 	 � K F H 0 � � (15)

@ ) I $F H 0 � @�� ) I $F H 0 > 2 	 U )65 	 0 U )�� $F 	 0 (16)

� ) , $M'0 � ����� X ) �6R $ � � ��������� �6R $F � 0 > 2 	 U )65 	 0 �  $M � � < $	 < $��	 �
� ) , $M 0 � � �  $M � 2 	 U )65 	 0 � ) * M 	 � & M 0 < $��	 �  ) � ) , $M 0�0 � �

(17)

	 ) R $F 0 � 	 � ) R $F 0 > �
�


 ) R $F 0 ��
 � ) R $F 0 > �� \ M � N �MOF � (18)

� ) & $MQ0 � � � ) & $MQ0 > \ 	 U )65 	 0 �  $M �
� ) & $MQ0 � � 2 	 U )65 	 0 � ) * M 	 � , $MQ< $	 0  M �  �� � ) & $MQ0 (19)

	 )� $MQ0 � 	 � )� $MQ0 > �� \ 	 U )65 	 0

 )� $M 0 ��
 � )� $M 0 > �� \ M U )65 	 0 � ) * M 	 � , $M < $	 � & $M 0 � �

(20)

@ ) 8 $ 0 � @�� ) 8 $ 0 > 2 	 U )65 	 0 (21)

� � � denote the expectation of over the posterior distributionsU ) � 0 . Hidden variables distributions
U )65 	 0 and

U )�� $F 	 0 are
given by

V W�X U )�� $F 	 0 � � V W�X I $F H � > � V W�X�� L $F H� I �
� �� � L $F H )ED $F 	 � � $F H 0 � � � V W�X�� $F 	 (22)

V W�X U )65 	 0 � � V W�X 8 $ � > � V W�X (*) ��	�+ < $	 �., $ �.- $ �/# $ 0 �� � V W�X U ) < $	 0 � > 2 F V W�X�� $F 	 � V W�X�# 	 (23)

where
� $F 	 and

# 	 are the normalization constants.
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