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ABSTRACT

Blind separation of independent sources can be achieved by
exploiting non Gaussianity, non stationarity or time corre-
lation. This paper examines in a unified framework the ob-
jective functions associated to these three routes to source
separation. They are the ‘easy routes’ in the sense that the
underlying models are the simplest models able to capture
the statistical structures which make source separation pos-
sible.

A key result is a generic connection between mutual in-
formation, correlation and marginal ‘non properties’: non
Gaussianity, non stationarity, non whiteness.

1. INTRODUCTION

It is known that blind separation of instantaneous mixtures
of independent sources cannot be achieved using the sim-
plest possible source model, namely that each source sig-
nal is a Gaussian i.i.d. (identically and independently dis-
tributed) sequence. This paper examines the three simplest
departures from the Gaussian i.i.d. model, each correspond-
ing to breaking one of the assumptions of the Gaussian i.i.d.
model. Specifically, we will consider the consequences of
modeling the sources as 1) non Gaussian i.i.d., 2) Gaussian
non stationary, and 3) Gaussian, stationarily correlated in
time.

Even though these three models are intended to capture
widely different statistical features, they all lead to objective
functions with strikingly similar features.

These three models have already been considered in the
literature. Indeed, the ‘historical approach’ is to use a non
Gaussian i.i.d. model; non stationarity is considered in con-
tributions [6, 7, 9]; time correlation is used in [10, 11, 2] to
name only a few.

This paper uses the language of information geometry [1]:
regular families of probability distribution are seen as smooth
manifolds embedded on some large distribution space, each
point in this space being a probability distribution. In this
paper, the ‘large space’ is the set of distributions of

�����
-

variates.

2. THREE SOURCE MODELS

In source separation or in ICA, an
�����

data set
�
	�� 
�����������������
��������

where

������

is an
�����

vector is modeled as
�
	 ��! !"	#� $%���������������&$%�������

(1)

where
�

is an unknown
�'�(�

matrix and the rows of the�'���
source matrix

!
are modeled as independent:

)+*,�-!.�/	1032465�78)+*:9;�-! 4 �
(2)

The < th row
! 4 	=� $ 4 �������������>�&$ 4 �������

is called the < th
‘source sequence’. In order to completely specify a model
for the distribution of the observed

�
, one have to choose a

model for the distribution of each source sequence.

a) Non Gaussianity The most common source model in
the ICA literature is non Gaussian i.i.d.. The probability of
a sequence

! 4 	�� $ 4 ���������������&$ 4 �������
then reads:

)+*:9;�-! 4 �.	 0@?A 5�78B 4 �-$ 4 �������
where

B 4 ��C �
is a univariate non Gaussian probability den-

sity for the < th source. In the following, D will denote the
‘non Gaussian manifold’, i.e. the set of distributions for

�
which are i.i.d. in time, that is,


������
and

�����EF�

are indepen-
dent if

�HG	I� E
and have the same distribution, possibly non

Gaussian. Every point in D is uniquely identified by speci-
fying the (common)

�
-variate distribution of


������
for any

�
.

Let D,J be the submanifold of D in which the components of
each


������
also are mutually independent for all

�
. The non

Gaussian model is that
)K*(L D,J .

b) Non stationarity The simplest approach to capture the
non stationarity of the < th source sequence probably is to
model it as a sequence of

�
independent Gaussian variables

with time-varying variances MON4 �������������>� M;N4 ����� . The proba-
bility of a sequence

! 4
then is

)+*:9;�-! 4 �.	P0 ?A 5�7;QSR $ 4 ������T M N4 ������U
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where
Q �-$ T M;N � 	 ����� ��� $ N	��
6M;N � �
� 
��OM N is the Gaussian

density. This simple non-stationary model is exploited in [9].
In the following, � will denote the ‘non stationary mani-

fold’ i.e. the set of distributions for
�

such that

������

is inde-
pendent of


�����EF�
(
��E+G	 �

) and has a zero-mean Gaussian dis-
tribution with covariance matrix � ����� , possibly dependent
on
�
. Every point in D is uniquely identified by specifying

a sequence � �������������>� � ����� of covariance matrices. Let �/J
be the submanifold of � in which the components of


������
also are mutually independent (or, equivalently, � ����� is di-
agonal) for all

�
. The non stationary model is that

).* L �/J .
c) Time correlation Several approaches have been pro-
posed to exploit time correlations in stationary source sig-
nals. In [10], Pham shows that time-correlated Gaussian
sources can be blindly separated provided their spectra are
not proportional and also introduces a Whittle approxima-
tion to the likelihood. The Whittle approximation uses the
fact that the DFT coefficients�$ 4 ���-�.	 7� ?�� ?A 5�7 $ 4 ����� ����� ��� 
:J�� ��� � ���
of a stationary sequence are asymptotically (for large enough�

) decorrelated with a variance given by the power spec-
trum� 4 ���-�.	������ �:$ 4 ������$ 4 ���"!$# �&% ����� ��� 
:J�� �'# � ����� (3)

In the Whittle approximation, the probability of a source
sequence

! 4
is given by
)+*:9;�-! 4 �.	 0@?( 5�7 Q �&) �$ 4 ���-�*) T+� 4 ���-���8�

In the following, , will denote the ‘non flat’ manifold i.e.
the set of distributions for

�
such that the DFT coefficients

of
�

are independent and have a complex Gaussian distri-
bution with covariance matrix

�@���-�
, possibly dependent on�

(i.e. a possibly non flat spectrum). Every point in , is
uniquely identified by specifying a sequence of spectral co-
variance matrices. Let , J be the submanifold of , in which
the components of


������
also are mutually independent (or,

equivalently, the spectral covariance matrices are diagonal).
Our model for time correlation is that

)K* L , J .
The blind manifold The three manifolds D , � , and , in-
tersect along a very specific submanifold of distributions
which are Gaussian, stationary and spectrally flat. These
are nothing but the Gaussian i.i.d. distributions. They form
a manifold denoted by - and we have in fact

D/.0� 	 �1.2, 	 ,3.�D 	 - � (4)

The symbol - for the Gaussian i.i.d. manifold refers to
‘blindness’ since it is the model which, preventing system
identification, makes us ‘blind’ to (part of)

�
.

We note that D , � , , , - are globally invariant under
left multiplication i.e. if the distribution of

�
belongs to

one of them, so does the distribution of
� �

for any
� �

�
matrix

�
. The same is not true of D,J , �/J or , J : this

is fortunate since it is precisely because left multiplication
of an independent sequence

!
by a transform

�
breaks the

independence that we can expect to recover uniquely the
sources by restoring the independence property.

Finally, we must admit that our terminology is a bit abu-
sive since the set of non Gaussian distributions of an

� � �
variate is much larger than D so that D actually a very re-
stricted non Gaussian manifold (and similarly for � and , ).
Again, the idea is to build models which are as simple as
possible while still being able to capture some statistical
feature, be it non Gaussianity, non stationarity or time cor-
relation. These are the easy routes.

Three likelihood functions We write out the likelihood
of
�

under the three models. It is more convenient rather to
work with the negative normalized likelihood function:

4 � ���65*7�8	9� ��;: <
="> ���;) ��� (5)

where the dependence on the parameters describing the source
distributions (nuisance parameters) is implicit; at this stage,
we only recall the nuisance parameter for the distribution of
the < th source is a univariate probability distribution

B 4 ��C �
in the non Gaussian model; it is a variance profile

� M,N4 �����&% ?A 5�7
in the non stationary case, and a (sampled) power spectrum�	� 4 ���-�&%

in the colored case.
According to the transformation model (1), we have

)6? �����.	 �)�@ ��A �B) ? )+*,� �DC 7 ��� (6)

In the following, we use the notationE�	 �DC 7 �
without explicitly denoting the dependence of

E
on
�

andE 4 	 � F 4 ���������������GF 4 �������
will denote the < th row of

E
.

Thanks to the product form (2), we find4 � ���/	 � 2465�7H4 4 ��E 4 �"! : <
= )�@ ��A �B)
where we set

4 4 ��CI) �J5*7�8	K� 7? : <
= )+*:9;��C � . The specific form
of
4 4 ��C �

depends on the source model:4ML4 ��E 4 �=	 7
? � ?A 5�76� : <
= B 4 �'F 4 ������� (7)4 *4 ��E 4 �=	 7
N ? � ?A 5�7ON�P

9RQ A'ST P9UQ A'S ! : <
=V
��OM N4 ����� (8)4MW4 ��E 4 �=	 7
N ? � ?( 5�7DX YN

9 Q ( S X PZ 9 Q ( S ! : <
=V
�� � 4 ���-� (9)

for the three models under consideration.
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3. CONTRASTS

The previous expressions for the likelihood depend on a
model and on the data set

�
. To go further, we suppose that

the data set is the realization of a random process and we de-
note
)6?

its ‘true’ probability distribution (as opposed to the
distributions in our models) and

)��
the (true) distribution

of
E 	�� C 7 �

. The symbol
�

denote the mathematical
expectations with respect to these ‘true’ distributions and
we look at the expected value

� 4 � ���
of the normalized

log-likelihood which can be seen as the quantity of which4 � ���
is an estimator. The resulting deterministic function

is sometimes called a ‘contrast function’.

Likelihood contrasts Regardless of the specific source
model for

)+*
, the data model is a transformation model of!

into
�
	 ��!

, as summarized by eq. (6). This is sufficient
to find the form of the likelihood contrast:� 4 � ���/	 �� � K � )�� ) )+* ��!�� �����&%.� (10)

where
� ����� 	 � � : <
= )6? ����� is the Shannon entropy of�

and where K
� CI) C �

denotes the Kullback Leibler divergence
(KLD). For two distributions with densities > and � , it is
defined as

K
� > ) � �;	�� > ��
8� : <
= � > ��
8� ��� ��
8���
	 
,� (11)

A key point in (10) is that
� �����

depends on the distribu-
tion of the data but does not depend on the model parame-
ters. Therefore, it is a constant term with respect to infer-
ence, so that the contrast function associated to the maxi-
mum likelihood principle corresponds to the minimization
of the Kullback divergence K

� )�� ) )+* �
between the recon-

structed sources and a source model.

Kullback projection and the Pythagorean theorem Let�
be some manifold of probability distributions. The (Kull-

back) projection of a distribution
)

onto
�

, denoted
)
�

,
is the closest distribution to

)
in
�

:

) � 	�
�� =���� ���� � K
� )0) ���

(12)

A nice decomposition property takes place when
�

is an
exponential manifold. A manifold is said to be exponential
if for any two of its elements, say

)�� �����
and
) 7 �����

, and
for any real � such that � � � ��	 � )

7 C��� ������) �7 ������	 �! 
" , the distribution

) 7 C��� ������) �7 ����� ��� � � � also belongs to
the manifold.

An exponential manifold behaves like a flat space in
some respects: when

�
is exponential, the Kullback pro-

jection exists, is unique and, for any distribution
�

of
�

,

K
� )0) ���;	

K
� )0) ) � � !

K
� ) � ) ���

(13)

which is to be understood as a Pythagorean theorem in dis-
tribution space with the KLD playing the role of a squared
Euclidean distance.

The manifolds D � D,J � � � �/J � , � , J and - all are expo-
nential manifolds, as is easily checked thanks to the charac-
teristic form of the densities in each of them. Many signif-
icant decompositions are obtained thanks the ‘orthogonal’
decomposition (13) applied to the manifolds of interest.

Projecting onto the models Whenever the source model)+*
belongs to

� J 	 D,J � �/J or , J , decomposition (13)
yields

K
� )��O) )+* �;	

K
� )��O) ) �� ��!

K
� ) �� ) )+* �

(14)

because for
� 	 D � � � , , manifold

�
is exponential and)+* L � J$# � . Distribution

)%�� being the best approx-
imation to

)��
in
�

, the divergence K
� )�� ) )&�� � measures

how good the approximation is. However, it is not relevant
to the estimation of

�
because K

� )�� ) )&�� � does not depend
on
�

: if
E�	 � �

, we have

K
� )�� ) ) �� �;	

K
� )6? ) ) �? ���

(15)

The reason why K
� )�� ) ) �� �

is invariant under left (invert-
ible) multiplication is that

�
itself is globally invariant un-

der left multiplication (as mentioned above). Hence, if
E

is
transformed by left multiplication, its best approximation)&�� undergoes the same transformation and (15) results
from the invariance of the KLD under invertible transforms.

Given the invariance (15), decomposition (14) shows
that, as soon as a particular source model

� J (for
� 	

D � � � , ) is selected, the only aspects of the data distribution
relevant to maximum likelihood estimation are those cap-
tured by the approximation

)%�� . In the following, we do
focus on K

� )&�� ) )+* � .
We now the Kullback projection

) ��
of
)��

for
� 	

D � � � , which is easy, give the simple structure of these
manifolds. For the non Gaussian model, one finds that

)('� is
the i.i.d. distribution

)
'� ��E �.	 0@?A 5�7;) N �'F;������� where
) N ��C �

is the distribution of an
� � �

obtained by marginalizing)��
over time, i.e.

) N ��C � 5*7�8	 7? � ?A 5�78) N Q A'S ��C � (16)

For the non stationary model, distribution
)%)� is the distri-

bution of � which have, for each
�
, the same covariance

matrix � � �����/	 �DF;����� F;�����+* as
F;�����

. Similarly, for the time
correlated model, distribution

)&,� is the distribution of ,
which have the same spectral covariance matrix

� � ���-�
asE

at each frequency lag
�
.

The resulting expressions of K
� ) �� ) )+* �

are

K
� )%'� ) )+* � 	 �

K
� ) N ) )�- � (17)

K
� ) )� ) )+* � 	 � ?A 5�7 K � � � �����*) � * �����&% (18)

K
� ) ,� ) )+* � 	 � ?( 5�7 K �	� � ���-�*) � * ���-�&% (19)
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where we denote K
� � 7 ) � N % 	 K

� �#� � 7 �*) �#� � 7 ��� , the KLD
between two

�
-variate zero-mean Gaussian distributions

with covariance matrices � 7 and � N .
The non Gaussian form (17) is well known and simply

expresses the Kullback mismatch between the marginal (in
time) distribution of

EI	1� C 7 �
and the model source dis-

tribution,
)�-

denoting the (common) distribution of
$%�����

for)+* L D . The other two forms (18) and (19) could be ob-
tained by taking expectations on (8) and (9). Since they
stem from Gaussian models, the Gaussian form K

�%CI) C %
of

the divergence appears there quite naturally.
Similar to the non Gaussian case, the non stationary case

expresses a ‘Kullback mismatch’ between the distribution
of
E

and the model source distribution, but the divergence
now is an average (18) over time of mismatches between
second-order moments. The obvious notation is � * ����� 	���-$%������$%�����+*>�.	 @ � 
 = � M;N7 ��������������� M;N4 ������� .

The time-correlated case is, as before, the ‘Fourier dual’
of the non stationary case with

� * ���-�.	 @ � 
 = ��� 7 ���-�����������+� 4 ���-��� .
The Kullback mismatch becomes an average through the
frequency spectrum of the mismatches between the spectral
covariance matrices of

E
and those of the model

!
.

4. MUTUAL INFORMATIONS

We proceed to further decompose the likelihood mismatch
K
� )&�� ) )+* � for the three choices of

�
. We shall isolate the

nuisance parameters (the model source distributions) and
three definitions of mutual information will result.

Isolating the nuisance parameters. In our next step, we
project

)&�� onto
� J at point

)%���� for
� 	 D � � � , . If)+*�L � J , the Pythagorean theorem applies since

� J is
exponential, resulting in

K
� ) �� ) )+* �;	

K
� ) �� ) ) ���� ��!

K
� ) ���� ) )+* ���

(20)

The first term of this decomposition depends only on the
(joint) distribution of

)%�� and not on the nuisance parame-
ters. We denote it by

� � ��E �65*7�8	 K
� ) �� ) ) ���� �

(21)

The second term is a KLD between two distributions with
independent components. Therefore it decomposes as a sum
of KLDs between marginal distributions:

K
� )&���� ) )+* �;	 � 2465�7 K � )&���� 9 ) )+*:9%��� (22)

Mutual informations The quantity
� � ��E � , being the KLD

from
)&�� to the corresponding independent manifold

� J ,
is a measure of the independence between the rows of

E
in

the particular model
�

. Therefore, we obtain three forms
for the mutual information, depending on the choice of

�
:

� ' ��E � 	 �
K
� ) N ) 0@2465�7;)N 9 � (23)

� ) ��E � 	 � ?A 5�7 K � � � �����*) @ � 
 = � � � �������&% (24)
� , ��E � 	 � ?( 5�7 K �	� � ���-�*) @ � 
 = ����� ���-���&%

(25)

These three forms are derived from (17,18,19) by minimiz-
ing over the nuisance parameters.

The first expression is the familiar non Gaussian i.i.d.
form for the mutual information. In the other two expres-
sions (24) and (25), the mutual information appears as a
measure of the mean diagonality of (spectral) covariance
matrices. They lead to simple separation techniques since
an efficient algorithm exists for the joint diagonalization of
a set of positive matrices. See [9] for the non stationary case
and [8] for the time correlated case.

Marginal mismatches The second term of decomposi-
tion (20) is a sum (22) of marginal mismatches. Their re-
spective forms in the three models are

K
� )%' �� 9 ) )+*:9%� 	 �

K
� ) N 9") )�- 9 � (26)

K
� ) )��� 9 ) )+*:9%� 	

K
� �	�DF N4 �����&%�) � M;N4 �����&%:� (27)

K
� ) ,��� 9 ) )+*:9%� 	

K
� �	�2) �F 4 ���-�*) N %�) �	� 4 ���-�&%:� (28)

Expression (26) only involves the time marginals of
) N de-

fined at (16) and those of
)�-

, defined similarly. The marginal
mismatches for � (resp. , ) involve only the variance pro-
files (resp. spectral profiles) between

E
and
!

. We have
used in (27) and in (28) a divergence between two sequences�	�8�����&% ?A 5�7 and

��
:�����&% ?A 5�7 of positive numbers, defined as

K
� �	�8�����&%�) ��
:�����&%:� 5*7�8	 � ?A 5�7
���� � � : <
= ���� � � � (29)

which is nothing but K
�	@ � 
 = ��� 7 ����������� ? �*) @ � 
 = ��
 7 �������>��
 ? �&%

so this is hardly a new notation.

5. DEPENDENCE AND CORRELATION

This section unveils the relationships between the three forms
of dependence, the correlation, and three ‘non-properties’
of the source distributions: non Gaussianity, non stationar-
ity and spectral coloration (non flatness).

Non properties The blind manifold - contains only Gaus-
sian i.i.d. distributions which are simplistic models: pro-
jecting

)%'� onto - ‘erases’ the non Gaussian structure of) '� by retaining only the second-order structure; projecting) )� onto - similarly ‘erases’ the time structure by averaging
it out; projecting

)&,� onto - similarly ‘erases’ the spectral
structure by ‘stationarizing it’. We take the divergence from
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)%'� (resp.
) )� , resp.

) ,� ) to
)��� as measures of non Gaus-

sianity (resp. non stationarity, resp. non flatness). To each� 	 D � � � , , corresponds a ‘non property’
� ��E �

of
E

:

� ��E � 5*7�8	
K
� ) �� ) ) �� ���

non property in
�

(30)

D ��E � 	
K
� )%'� ) ) �� ��� non Gaussianity of

E
(31)� ��E � 	

K
� ) )� ) ) �� ���

non stationarity of
E

(32), ��E � 	
K
� ) ,� ) ) �� ���

non (spectral) flatness(33)

These non properties are invariant under invertible left mul-
tiplication of

E
because the KLD as well as both manifolds- and

� 	 D � � � , are globally invariant such transforms.
Thus

� ��E �/	 � �����
if
EI	�� �

for any invertible
�

.

Marginal non properties The above definitions of ‘non
properties’ also apply to each component

E 4
(each row) ofE

, that is, to
��� �

variables. In this case, the just mentioned
invariance property reduces to a simple scale invariance.

In the non Gaussian case, D ��E 4 � is
�

times the KLD
from

) N 9 to its best Gaussian approximation. This quan-
tity is sometimes called neguentropy [4]. In the non sta-
tionary (resp. non flat) case, � ��E 4 � (resp. , ��E 4 � ) mea-
sures the deviation of

�	�DF N4 �����&% (resp.
�	� �F N4 ���-�&% ) from a

constant variance profile (resp. from a flat spectrum). Us-
ing the Kullback-like measure (29) of divergence between
two positive sequences, we define the ‘Kullback dispersion’��� �	�8�����&%:�

of a sequence
�	�8�����&% ?A 5�7 of

�
positive numbers

as the divergence to the closest constant sequence:

����� � 5*7�8	 ��� �� K
�����8�����������������8�������*) �	�:���������
��������


(34)

which is equal to



if and only if
�

is a constant sequence.
The minimizer is easily found to be

� 	 7? � A �8����� . Insert-
ing this value back in (29) and rearranging yields
����� �/	 � R : <
= � 7? � A �8������� � 7? � A : <
= �8����� U (35)

(which could be an alternate definition of the dispersion).
With this, the Gaussian ‘non properties’ appear as disper-
sions, as in this summary:

D ��E 4 �=	 �
K
� ) N 9") Q ��C T+�DF N4 ��� (36)� ��E 4 �=	���� �	�DF N4 �����&%:� (37), ��E 4 �=	���� �	� �F N4 ���-�&%:��� (38)

Correlation The Gaussian i.i.d. manifold - is a poor
manifold but we can still define a mutual information

� � ��E �
with respect to it by (21). We use a special notation � ��E �
for it since one finds

� ��E �65*7�8	 � � ��E �/	 K
� ) �� ) ) � �� �;	 �

K
� � �O) @ � 
 = � � � �&%

where � � is the covariance matrix

� �15*7�8	 7? � ?A 5�7 � � ������� (39)

so that the Gaussian i.i.d. mutual information � ��E � 	� � ��E � is nothing but a correlation measure since it mea-
sures the diagonality of � � . We will plainly call it ‘the
correlation’ in the following.

Connecting everything All our distributional measures
are connected by applying twice the Pythagorean theorem.
First, we can apply it to triangle

� )%�� � )��� � )�� �� � for each� 	 D � � � , because
)&�� projects at point

)��� onto -
which is exponential and contains

)�� �� . We get

K
� ) �� ) ) � �� �;	

K
� ) �� ) ) �� � !

K
� ) �� ) ) � �� ���

(40)

Second, we can apply it to triangle
� )%�� � )&���� � )�� �� � as in

eq. (20) because
)�� �� belongs to

� J . We get

K
� ) �� ) ) � �� �;	

K
� ) �� ) ) ���� � !

K
� ) ���� ) ) � �� ���

(41)

On the right-hand side of (40), the first term is the ‘non
property’

� ��E �
associated to

�
and the second term is

the correlation � ��E � . On the right hand side of (41), the
first term is the dependence

� � ��E � defined at (21); the
second term, being a KLD between distributions with in-
dependent rows, is the sum of the marginal KLDs. More
to the point, we have K

� )%���� ) )�� �� �.	 � 2465�7 � ��E 4 � since
each of the marginal KLDs is recognized as the ‘non prop-
erty’ associated to manifold

�
. We have thus obtained

two independent expressions for K
� )%�� ) )�� �� � using twice

the Pythagorean theorem over the same hypotenuse while
the other sides of both triangles have been identified with
meaningful properties. Combining (40) and (41) yields

� � ��E � ! 2�465�7 � ��E 4 �/	��.��E � ! � ��E ��� (42)

which connects independence, correlation and joint and marginal
‘non properties’ in a given model. These connections are
depicted in the figure below for

� 	 D .
Of particular relevance to ICA, is the fact that

� ��E �
is

constant under left multiplication (see above). Therefore, ifEI	�� �
, then for

� 	 D � � � , :

� � ��E �/	��.��E � � � 2465�7 � ��E 4 � ! � ����� (43)

In other words,

under linear transforms, the dependence
� � ��E �

measured in some model
� 	 D � � � , is, up

to a constant term
� �����

, the correlation
�.��E �

,
minus the marginal ‘non-properties’ associated
to the model.
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6. DISCUSSION

Summary Three simple models
� 	 D � � � , can be

used in ICA. In a model
�

, The likelihood objective (5) is
an estimator of the likelihood contrast (10) which amounts,
by (14,15) to matching the distribution

)
�� of
EI	1� C 7 �

as seen by model
�

to the source distribution
).*

. This mis-
match itself decomposes as mutual information

� � ��E � plus
marginal source mismatches (20,21,22). Mutual informa-
tion itself, whose form depends on the model (23,24),25),
can be decomposed as a pure correlation measure � ��E �
plus ‘marginal non properties (43) All these quantities have
different expressions depending on model

�
but retain the

same structure across all models.
The bottom line is that looking for components which

are ‘as independent as possible’ is equivalent, in a given
model, to look for components which are maximally decor-
related and non Gaussian, or non stationary, or spectrally
colored. This is quantitatively expressed by eq. (43) and
illustrated by fig. 1.
Relation with previous works In the non Gaussian i.i.d.
case, Comon had already noticed in his seminal paper [4],
that if one enforces decorrelation, (that is, � ��EH� 	 


),
then the mutual information boils down to the sum of the
marginal ‘neguentropies’. The present paper generalizes
Comon’s insight in two directions. First, equation (43) shows
that mutual information nicely balances correlation and non
Gaussianity. This is to compared to two other extreme ap-
proaches: the pre-whitening or sphering approach to ICA
—which enforces decorrelation— amounts to give an infi-
nite weight to the correlation term; on the opposite side, the
one-unit approach (see e.g. [5]) starts with the idea of find-
ing the most non Gaussian marginal distribution, amounting
in effect to give zero weight to the correlation term. Second,
equation (43) shows that, depending on the chosen source
model, the marginal non Gaussianity (36) is replaced by
a measure of non flatness of the variance profiles either in
time (37), or in frequency (38).

Due to space limitations, most proofs have been omitted
paper. However most of the present material revisits other
publications. See [3] for the geometry of the non Gaussian
i.i.d. case, see [9] for mutual information in non stationary
models and [8] for mutual information in temporally corre-
lated models.
Diversity This paper emphasizes the structural similari-
ties between three models. The comparison could be pushed
further in terms of estimating equations, adaptivity (estima-
tion of the nuisance parameters) and stability conditions.
However, as a closing remark, a significant difference can
be pointed out: blind identifiability in model � (resp. , ) re-
quires some diversity: if two sources have proportional vari-
ance profiles (resp. power spectra) they cannot be blindly
separated (in the given model). No such diversity is required
in the non Gaussian model.
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Figure 1: Connections between mutual information, corre-
lation and non Gaussianity in the case of

�
=2 components.

Solid lines: D,J (horizontal) and - (vertical). The whole pic-
ture is embedded in D .
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