
FETAL HEART RATE VARIABILITY EXTRACTION BY FREQUENCY TRACKING

Allan Kardec Barros
��� �

, Noboru Ohnishi
��� �

���
BMC, RIKEN, Japan. � � Nagoya University, Japan. 	 � UFMA, Brazil.

E-mail: akbarros@ieee.org.

ABSTRACT

In this work, we propose an algorithm to extract the fe-
tal heart rate variability from an ECG measured from the
mother abdomen. The algorithm consists of two methods:
a separation algorithm based on second-order statistics that
extracts the desired signal in one shot through the data, and
a hearth instantaneous frequency (HIF) estimator. The HIF
algorithm is used to extract the mother heart rate which
serves as reference to extract the fetal heart rate. We car-
ried out simulations where the signals overlap in frequency
and time, and showed that the it worked efficiently.

Keywords: Source separation, Independent component
analysis, Analytic Signal, A priori information, Second or-
der statistics, Auto-correlation.

1. INTRODUCTION

The fluctuations of the heart beating or heart rate vari-
ability (HRV) is a useful tool for assessing non-invasively
the status of the autonomic nervous system (ANS). And
a special interest is shown by the scientific community in
the analysis of fetal HRV, with the aim of understanding
the intra-uterin ANS, or detecting eventual cardiac malfunc-
tions.

HRV is usually calculated from an electrocardiogram (ECG),
after detecting the regular peak that appears in the ECG
waveform due to heart beating, called R-wave (see Fig. 1),
and computing the time difference between two consecutive
R-waves. The HRV signal is the sequence of these differ-
ences. However, this method has the disadvantage of need-
ing more memory for storage and being more sensitive to
noise, specially in the case of fetal HRV, as the fetal ECG
(FECG) appear corrupted by strong cardiac artifacts from
the mother, as shown in Fig. 1.

Recently, using powerful tools of statistical signal pro-
cessing, a great development was reached through the con-
cept of blind source separation (BSS) and independent com-
ponent analysis (ICA). These concepts were successfully
used for separating mutually independent signals in a num-
ber of areas, including biomedical signal processing [24, 18,
22, 4]. BSS is based on the following principle. Assum-
ing that the original (or source) signals have been linearly
mixed, and that these mixed sensor signals are available,
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Fig. 1. Example of an ECG signal from a pregnant woman.
(1) No fetal influence appears (stronger and slower). (2) The
fetal influence can be noticed (weaker and faster).

BSS finds in a blind manner a linear combination of the
mixed signals which recovers the original source signals,
possibly re-scaled and randomly arranged in the outputs.

However, extracting all the source signals from the sen-
sors may not be of interest to the user. Rather, one can use
some a priori information available about the signal in order
to find an important signal. Thus, Barros and Cichocki [2]
proposed a quite simple algorithm based on second order
statistics which was shown in theory and experimentally
that could extract a given signal using temporal informa-
tion. On the other hand, Barros and Ohnishi[3] proposed
a new method called heart instantaneous frequency (HIF)
which showed to be an efficient estimator of HRV using the
spectral response of the cardiac signal.

Here we propose an algorithm which extracts the fetal
heart rate by combining the above concepts of blind source
separation and heart instantaneous frequency. Our method
is designed by using, instead of real signals, the analytic sig-
nal along with the exponential notation. The idea is to use
the HIF calculated from the mother ECG to extract the fetal
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heart rate. Another contribution of this work is that there
is no need to have various sensor measurements, as usually
needed by the BSS community, because we use only part of
the spectral response of the sensors, diminishing therefore
the possibility of various sources contributing at the same
time to the mixing process. An advantage of the present
approach over the one of Barros and Cichocki [2] is that
we now assume that the signal to be extracted can be non-
stationary and have a time-varying frequency.

Thus, we divide this manuscript in the following form.
Firstly, we present the method, composed by HIF and the
proposed BSS algorithm. In particular, this algorithm uses
the time-varying mother heart instantaneous frequency to
extract the fetal contribution to the ECG. Then, we show
simulations and some experimental results. In the next sec-
tion, we discuss the results and carry out the conclusions.

2. METHODS

We model here the ECG as a quasi-periodic signal with
a fundamental plus infinite harmonic frequencies as shown
below,

���������
	�� 
�� 	
� � ��������� � ������� ����� (1)

where  �! ����� is the fundamental frequency and � � ����� is a
time-varying amplitude modulator.

Separation 
Algorithm HIF

HIF

Mother's HIF

Fetal HIF

x1

x2
y

Fig. 2. Block diagram of the proposed method, composed of
a separation algorithm and heart instantaneous frequency
(HIF)extractor. From two ECG measurements �#" and �%$ ,
where the fetal and maternal signals are mixed, and by using
the mother’s HIF, the separation algorithm extracts the fetal
contribution & , from which the fetal HIF is calculated and
output.

Figure 2 shows the block diagram of the proposed algo-
rithm. Essentially, it is grounded on two methods: HIF and a
separation algorithm. Firstly, from one of the ECG sensors,

we calculate the mother’s HIF, which serves as reference to
the separation algorithm to extract the fetal ECG & �(')� and
from this, extract the fetal ECG.

2.1. Heart Instantaneous Frequency

For a given signal ������� , the corresponding analytic signal*������ is given by,*������+�,��������-/.�021 �������43 � 021 �������435�768/9 ����:;���<=:+> : � (2)

where 021 �������43 is the Hilbert transform of ������� . An advan-
tage of the analytic signal is that it can define uniquely a
modulation, dealing with exponentials.

As carried out in the signal processing literature (e.g.
[7]), frequency modulation lead us to the possibility of us-
ing the concept of the instantaneous frequency. For signal������� , the instantaneous angular frequency  ?! ����� is calcu-
lated from the analytic signal and is given by

 �! �����+� >A@ ! �����> � � @ ! �����B�DCFE�GIH�CFJLK <M021 �������43�������ONQP (3)

We call the heart rate variability estimated from the ECG
spectral response as the heart instantaneous frequency (HIF),
which involves first the estimation of the spectrogram. The
spectrogram for a given signal R ����� is defined asS ��� ��T �B�VUUUU 6W 8X9 � � � $ �ZY�� R ������[#����<=:;��UUUU

$ P (4)

We then look for the frequency value corresponding to
the maximum of

S ��� ��T � at each time instant in a given fre-
quency range. We call this quantity the driver \ ����� , and it is
given by \ �����+� TL]F^ C�_`1 S ��� ��T �43ba � �4� " ��c#da � �4� " �4�ed P (5)

After this, we calculate the instantaneous frequency by
using a band-pass filter around a central frequency given
at each time instant by the driver. In particular, we use
wavelets to construct the filter. The basic wavelet isf �����B�g6W 8 >> �=hi � �j�%k l4m npo nqsr q G�t�uMK W 8 � 9Av \ ����� > � Nxwy �

\ �����+� 6z � v \ ����� P (6)

where
z

is a short time interval. The filtered signal is given
by �������+� 9 �� 	 f ����� R ����� > : P (7)

The heart instantaneous frequency  �! ����� is then calcu-
lated using (3).
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2.2. Proposed BSS Algorithm

Let us make some preliminary definition, by denoting
the source signal vector as � �(')�+�s1 �F"��(')� P�P�P ���e�(')�43 and the
mixed vector as � �(')� � 1 �5"F�(')� P�P�P ���5�(')�43 , where the mix-
ture is written as � �(')�+��� � �(')� , ' is the sampling number,
and � is an �
	�� nonsingular matrix.

Because we want to extract only the desired source sig-
nal, say � � ����� , we can use a simple processing unit described
as & �(')�M�
��� � �(')� , where & �(')� is the output signal and �
is the weight vector. Then, let us first define the following
error,

� �(')�B� & �(')��< � � ��� �����I� P (8)

The idea is to carry out the minimization of the mean
squared error � ��� � ��� 1 � $ 3 . From (8), and dropping the
index ' for convenience, we find,

� ��� �+��� � � 1 ��� � 3�� < W � 1 � � ��� � � � � 3)-�� 1 � � $ ��� � 3 P (9)

This cost function achieves minimum when its gradient
reaches zero in relation to � . Thus, taking into account that& ����� � , we find,

� � ��� �� � � W � 1 ��� � 3�� < W � 1 � � ��� � � 35��� P (10)

Now, we can solve this equation by the following algo-
rithm,

� ��� 1 ��� � 3 � " � 1 � � ��� � � 3 � (11)

We can also assume that the sensor vector has been prewhitened
so that � 1 ��� �53 �� , with this, (11) sleads to the learning
rule,

� ��� 1 � � � ��� � 3 P (12)

We propose to use @ ! or  �! as in (3). With some more
reasoning, one can notice that this algorithm also avoids the
so-called permutation/scaling problem which usually hap-
pens in ICA theory, by using a priori information on the
phase.

3. RESULTS

We carried out simulations to test the validity of the pro-
posed separation algorithm. Here we show one where we
mixed two different source signals: one with increasing and
another with decreasing frequency with time, while they
cross one another in frequency. The signals were �Z"������ �! �����"�$# � 1 W 8 ���&%('*)*) - 6 � �43 and � $Z����� � ! �����"�$# � 1 W 8 ����+,)*)`<���&%('*)*)M- W � �43 , where

! ����� is a Bartlett window. They were
chosen because they overlap temporarily in frequency, as
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Fig. 3. Spectrogram of the sum of the two source signals.
Notice the frequency overlapping. In this case, regular fil-
ters shall not work.

shown by the spectrogram of their sum in Fig. 3, and reg-
ular algorithms [5, 23] shall not work. It is important to
notice that the source signals are amplitude and frequency
modulated at the same time. We mixed randomly the source
signals to generate sensor signals and used the a priori fre-
quency information to extract either signal. In all the cases
the proposed separation algorithm worked efficiently.

We tested also our algorithm to the ECG data. We sim-
ulated a mixture of two ECGs measured originally from
adults and decimated one of them by a factor of two in or-
der to have a simulated fetal ECG. Their spectral response
up to 10 Hz are plotted in Fig. 4. It is important to notice
that the fundamental frequency of the FECG is around 2 Hz,
which overlaps with the first harmonic of the mother ECG.
This stands a problem for regular filters on which HIF algo-
rithm is based on. As we can see from Fig. reffig:res, even
if the signals are mixed, the mother fundamental frequency
remains clean. Thus, we used this frequency information to
make sure we were extracting the mother ECG signal. As
proposed in the block diagram in Fig. 2, we removed this
signal from the sensors, from which we estimated the fetal
HIF. As we had the original FECG, from its R-waves we
found the heart rate variability. We show this HRV and the
extracted HIF in Fig. 5.

4. DISCUSSION

As we can see from the results, the proposed algorithm
worked efficiently in two difficult cases where the source
signals overlapped in time and frequency. Moreover, it is
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Fig. 4. Spectral response of two source signals simulating a
(1) fetal and (2) a maternal ECG measurements. Notice the
spectral overlap around 2 Hz.
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Fig. 5. Comparison between the fetal heart rate variability
measured (1) from the ECG R-wave and (2) by the proposed
heart instantaneous frequency (HIF) algorithm.

worth to emphasize that this algorithm, contrary to proposed
ones, reaches convergence in one shot through the data.

On the other hand, extracting signals from a corrupted
environment has been an old issue in statistical signal pro-
cessing, with different approaches which evolved together
with machines computational power. In this context, differ-
ent statistical tools were used. Firstly, second order statistics
(SOS) by the estimation of correlations, and after, higher or-
der statistics (HOS), involving for example the estimation of
skewness and kurtosis, were proposed. However, the calcu-
lation of HOS moments are more sensitive to data size then
SOS. Thus, our algorithm shows also this advantage, since
it needs only the calculation of a second order moment.

It is important to emphasize that the energy of the ma-
ternal ECG is much stronger than the fetal ECG, besides,
the fundamental frequency of the FECG usually overlaps
the first harmonic of the MECG. Thus, source separation
stands as a strong tool for solving this problem.

We also believe that it can be useful in other applications.
For example, in biomedical signal processing especially in
EEG/MEG, e.g., for some experiments with event related
potentials (ERP), where the timing is controlled. Equally,
the proposed algorithm can be used in speech/audio and
telecommunication applications.
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