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ABSTRACT

We propose a blind source separation model for statistically
independent source signals, when the mixing operator is bi-
linear. This model is equivalent to a linear model for sep-
aration of pairwise multiplications the source signals. We
prove that if the source signals are are colored and have dis-
tinct autocorrelation functions on a given setP , then we can
extract simultaneously the pairwise multiplications of them,
using a generalized eigenvalue problem.

1. INTRODUCTION

The interest of blind signal processing, especially, indepen-
dent component analysis (ICA) has been increased recently,
due to its potential applications in many areas, including
brain signal processing and other biomedical signal process-
ing, speech enhancement, wireless communication, geophys-
ical data processing, data mining, etc. (see for instance the
book [17] and references therein).

The problem of blind source separation (BSS) is formu-
lated as follows: we can observe sensor signalsx (k) =
[x1 (k) , . . . , xm (k)]T which are described as

x (k) = Hs (k) + n (k) , (1)

whereH ism×n full-rank unknown mixing matrix,s (k) =
[s1 (k) , . . . , sn (k)]T (n ≤ m) is a vector of unknown zero
mean colored (i.e. with temporal structure) source signals
andn(k) is a vector of additive white noise. Our objec-
tive is to estimate the mixing matrixH and/or source sig-
nals simultaneously or sequentially one-by-one assuming
that they are uncorrelated (not necessarily statistically inde-
pendent) but arbitrarily distributed colored (not independent
identically distributed), i.e. we assume that sources satisfy
the relation: E {si (k) si (k − p)} 6= 0 at least for some
p = 1, 2, . . . and have different temporal structures.

The use of second statistics approach for blind separa-
tion of temporally correlated sources has been developed
and analyzed by many researchers, including Amari [2],

Molgdey and Schuster [5], Pham and Garat [7], Belouchrani
et al. [3], Cichocki, Rutkowski, Barros, and Oh [13], Ci-
chocki, and Thawonmas [14], Choi and Cichocki [12], Pearl-
mutter and Parra [6], Mueller et al.[10], etc. Moreover, it
should be mentioned that recently several researchers have
developed a number of efficient algorithms for sequential
blind source extraction, especially works of Delfosse and
Loubaton [15], Hyv̈arinen and Oja [16], etc.

In this paper we consider a new model for BSS problem,
when the mixing mapping is bilinear. This model is equiva-
lent to a linear model, if the source signals are presented as
pairwise multiplications of statistically independent signals.
We prove that, using a generalized eigenvalue problem and
second order statistics we can extract simultaneously these
pairwise multiplications, assuming that they are colored and
have different autocorrelation functions on a given set of de-
laysP .

2. BILINEAR MODEL

Consider the following model:

x(t) = H(s(t), s(t)), t = 1, 2, ...

whereH : IR2n → IRn2
is a bilinear operator. Equivalently,

xi(t) = sT (t)His(t) =
n∑

k,l=1

hi,k,lsk(t)sl(t),

whereHi, i = 1, ..., n2 is a symmetric matrix with elements
hi,k,l.

Define the matrixA ∈ IRn2×n2
with elementsai,j =

hi,k,l for j = n(k − 1) + l, i = 1, ..., n2 k, l = 1, ..., n
and the signals̃sj(t) = sk(t)sl(t). Then the above bilinear
model is equivalent to the following linear model:

x(t) = As̃(t), t = 1, 2, ...

We assume that the matrixA is nonsingular.

328



3. BLIND EXTRACTION OF A MULTIPLICATION
OF TWO SIGNALS

Let us firstly assume that we want to extract only one single
multiplication of two source signals, saysk(t)sl(t) from the
available sensor vectorx(t). For this purpose we design a
single processing unit described as:

y1 (t) = wT
1 x (t) =

n2∑

j=1

w1jxj (t) ,

wherew1 = [w11, w12, . . . , w1n2 ]T .
Define

ck,l =
n2∑

i=1

w1ihi,k,l.

Then

y(t) =
n2∑

k,l=1

ck,lsk(t)sl(t).

Our objective is to estimate the optimal values for the
vectorw1 in such way that the processing unit extracts suc-
cessfully the multiplication of two sources.

Observation: if the matrixC =
∑n

i=1 wiHi (which
is symmetric) has only two nonzero elements, sayck,l and
cl,k, theny1(t) = 2ck,lsk(t)sl(t) for everyt = 1, 2, ..., i.e.
we extract the multiplication of thek−th andl−th sources.

The idea how to find suchw1 is obtained from the fol-
lowing optimization problems.

(P1) maximizef(w) = wT Rx(p)w
under constraintwT Rx(0)w = 1,

whereRx(p) = E{xxT
p }, x = x(k), xp(k) = x(k − p),

p 6= 0 is time delay andE is the expectation (averaging)
operator:

E{xxT
p } = lim

N→+∞
1
N

N∑

k=1

x(k)xT (k − p);

and

(P2) maximize

f̃(c) =
n∑

k,l=1

(
2c2

k,lE{sksk(t− p)}E{slsl(t− p)}+ ck,kcl,l

)

under constraint
n∑

k,l=1

(
2c2

k,l + ck,kcl,l

)
= 1,

where the vectorc has componentscj = ck,l for j = n(k−
1) + l.

Define the matrixS(p) with elementssi,j(p) = 1 for
i = n(k−1)+k, j = n(l−1)+l andsj,j(p) = E{sk(t)sk(t−
p)}E{sl(t)sl(t−p)}, j = n(k−1)+l, k, l = 1, ..., n; every
other elements ofS(p) are zero by definition.

We have the following representation:

E{xxT
p } = AS(p)AT (2)

Lemma 1 The problems (P1) and (P2) are equivalent in
sense that

(a) their optimal values are equal (fmax = f̃max), and
(b) w∗ is a solution of (P1) if and only if the vector

c∗ with componentsc∗k,l :=
∑n2

i=1 w∗i hi,k,l describing the
mixing and extraction procedure is a solution of (P2).

The above lemma follows easily from (2) and is a par-
ticular case of the following theorem.

Theorem 1Suppose that the source signals{si(t)}n
i=1

are uncorrelated and colored (i.e.Rs(p) = E{ssT
p } p =

1, 2, ... are diagonal matrices with at least some nonzero
entries (on the main diagonal) andRs(0) = I). Then:

(a) If (P1) has unique solution (up to sign)w∗, then the
solution of (P2) isc∗ = AT w∗ and this solution has at
most two nonzero elements.

(b) Moreover, the set of the generalized eigenvalues of
the matrix pencil(Rx(p),Rx(0)) and the set of the gener-
alized eigenvalues of the matrix pencil(S(p),S(0)) coin-
cide.

(c) If a generalized eigenvalueλi has multiplicity 1, then
the corresponding eigenvectors of(S(p),S(0)) has at most
2 nonzero components.

Proof. (a) The assertion follows by Lemma 1 and as-
suming the contrary.

b) The assertion follows from representation (2).
(c) The assertion follows from representation (2) and by

the special structure ofS(p).

4. SUFFICIENT CONDITION FOR
SIMULTANEOUS BLIND SOURCE SEPARATION

OF MULTIPLICATIONS OF SIGNALS

We define autocorrelation functions of second order for the
source signals by

ri(p) = E{si(k)si(k − p)},
wherep ≥ 1 is a time delay. For a given finite subsetP =
{p1, ..., pL} of natural numbers we introduce the following
condition:

∀i, j 6= i ∃l(i, j) ∈ {1, ..., L} : ri(pl(i,j)) 6= rj(pl(i,j)),
(DAF(P ))

i.e. the sources have different autocorrelation functions on
the setP , at least for some discrete time delayp(i, j) ∈ P .
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Define a covariance matrix of the sensor signals by

Rx(p) = E{xxT
p },

and similarly, a covariance matrix of the source signals by

Rs(p) = E{ssT
p },

wherexp = x(k − p),x = x(k), sp = s(k − p), s = s(k).
We recall that the source signals areuncorrelated, if

Rs(p) are diagonal matrices for everyp ≥ 1. Note that
in this case the diagonal elements ofRs(p) areri(p), i =
1, ..., n. If the source signals are statistically independent,
then this condition is satisfied, but the converse assertion is
not always true. We say that the sources arecolored, if for
some vectorp0 ≥ 1 the matrixRs(p0) is nonzero (diago-
nal) matrix.

Let the setP hasL elements{p1, ..., pL}. For a given
vectorb ∈ IRL define

X(b) =
L∑

i=1

biRx(pi),

and similarly for the source signals

S(b) :=
L∑

i=1

biS(pi).

Theorem 1Assume that the source signals are colored
and uncorrelated and condition (DAF(P)) is satisfied. Then
there exists a vectorb ∈ IRL such that the eigenvalues of
the matrix pencil(X(b),Rx(0)) have multiplicity 1 and
wT

i x(t) = Ksk(t)sl(t), i = n(k − 1) + l (K is a con-
stant). Furthermore, the setB(L) of all vectorsb ∈ IRL

with this property form an open subset ofIRL, whose com-
plement has a Lebesgue measure zero.

Proof. (a) We haveX(b) = AS(b)AT , and the matrix
S(b) has at most two non-zero elements in each column and
each row. Observe that the matrix pencils(X(b),Rx(0))
and(S(b),S(0)) have the same eigenvalues. It is easy to
see that the complement ofB(L) is a finite union of sub-
spaces ofIRL. If we prove thatB(L) is nonempty, then
every of these subspaces must be proper (i.e. different from
IRL), consequently, with a Lebesgue measure zero (with re-
spect toIRL), therefore the complement ofB(L) must have
a Lebesgue measure zero too.

The proof thatB(L) is non-empty is similar to the proof
that analogous set is non-empty (see [4]).

Remark In practical situations, when the sources are
supposed to be very different (i.e. to have different autocor-
relation functions for almost all delaysp), the setP can be
chosen to consist of only one element and to take trials for
differentp, until obtaining distinct eigenvalues of the matri-
cesX(b).

5. CONCLUSION

We propose a bilinear model for the Blind Source Separa-
tion problem and show that it is equivalent to a linear BSS
problem for source signals consisting of pairwise multipli-
cations of the original sources. We give conditions under
which it is possible extraction of such pairwise multiplica-
tions and describe a procedure based on generalized eigen-
value problem for this purpose.
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