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ABSTRACT

Most Blind Source Separation algorithms separate the
sources by using either second or higher order statis-
tics. In this paper we suggest to use a weighted com-
bination of the second order covariance matrices and
the fourth order eigenmatrices to restore the original
signals. Thus, we can achieve separation where other
algorithms relying on a single type of statistic only, fail.
‘We then develop a novel diagonalisation algorithm, the
Cayley Joint Unitary Diagonalisation (CJUD) algorithm,
to find the optimal unitary diagonaliser and to de-
termine the weights. Except in some trivial cases,
it is very hard to determine the weights without any
prior information. =~ We show in this paper how the
use of some prior knowledge can be incorporated in
the CJUD algorithm in order to get a better estimate
of the weights.  Simulations are presented to show
the improvement in performance of the proposed al-
gorithms.

1. INTRODUCTION

Blind Source Separation (BSS) is concerned with recov-
ering the original unknown sources from their observed
mixture. The algorithm operates blindly in the sense
that, except for statistical independence, no a priori in-
formation about either the sources or the transmission
medium is known. Most BSS algorithms operate in
two steps. First the observed data is whitened. Then
the transformation that relates the unknown sources to
the decorrelated mixture is found as a pure rotation,
since the sources and the decorrelated observations are
white vectors. In algebraic BSS methods, this rotation
is found by unitarily diagonalising a set of matrices. If
the source signals have different spectral contents or
are non-stationary, these matrices can be constructed
from Second Order Statistics (SOS) only. The SOBI
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algorithm uses a set of non-zero covariance matrices
to separate the sources [1]. If the sources are white,
one must resort to Higher Order Statistics (HOS). In
JADE, the information required to find the rotation is
obtained from the eigenmatrices of the fourth order cu-
mulants [2]. Note however, that HOS based separation
is only possible if at most one of the sources is Gaus-
sian. Thus, both SOS and HOS separation algorithms
have their specific area of application. In this paper,
a slight adjustment to the conventional BSS problem
is made: it is assumed that one column of the mix-
ing matrix is known. A similar approach was taken
in [3]. In the blind beamforming scenario for example,
this would correspond to knowing the array response of
one of the sources. First, a new joint diagonalisation
algorithm, the Cayley based Joint Unitary Diagonali-
sation (CJUD) algorithm, is introduced. Then, it is
shown how the CJUD algorithm can be changed to in-
corporate the prior knowledge. Finally, the Combined
Weight Statistics (CWS) algorithm is developed. This
algorithm separates the sources on the basis of a com-
bination of their SOS and HOS. For a large number
of cases, this is possible because most natural signals
contain both spectral information and higher order in-
formation. The idea of merging different statistics was
already suggested in [4]. The contribution of this pa-
per is that the WCS algorithm uses prior information
about the mixing matrix to assign different weights to
the different statistics. Thus, it can achieve successful
separation in difficult cases, e.g. in very noisy circum-
stances, if the sources are white or if the sources are
nearly Gaussian. In all these cases, traditional meth-
ods are very likely to fail, either because the signal is
drowned in the noise or because there is hardly any ad-
ditional information available to perform the rotation.

2. PROBLEM FORMULATION

The instantaneous noiseless BSS problem, with the as-
sumption of an equal number of sources and sensors,



can be described mathematically as follows:

x(t) = As (t) (1)
In this context, the vector s(t) = [s1(t),...,sn (t)}T
contains the original sources, the vector x (t) = [x1 (¢) ,.

contains the array output sampled at time ¢ and A is
the N x N mixing matrix or transfer function between
the sources and sensors. In this paper, only real sources
will be considered. An implicit assumption is that the
sources have unit variance. Separation is achieved if a
vector y can be found so that

y (t)

where B is the unmixing matrix, P is a permutation
matrix and D is a diagonal matrix. Hence, we can
estimate the sources up to their order and their power.

— Bx(t) = PDs(t) 2)

3. WHITENING

The whitened observation vector is defined as:

z(t) = Wx(t) (3)

where W is the whitening matrix. The covariance
matrix of the whitened mixture at lag 7 can then be
expressed as:

R. (1) =WR, (r)WT (4)

Or in terms of the sources:

R. (1) = WAR, (1) A"W" (5)
A necessary and sufficient condition for the vector z (¢)
to be white is that R, (0) = I, where I is the identity
matrix. Hence, at zero lag, (5) becomes:

R.(0)=WAATWT =1 (6)
since the sources have unity power. As R, (0) = AAT,
the whitener can be determined from the observation
covariance matrix R, (0). Equation (6) shows that,
provided W is a whitening matrix, WA is a N x N
unitary matrix. It follows that for any whitening ma-
trix W, the mixing matrix can be factored as :

A=WU (7)

where U is a N x N unitary matrix. Finding the
whitening matrix W still leaves the unitary factor U
of the mixing matrix undetermined. This unknown
rotation can be found by exploiting either the time de-
pendence structure of the signals or their fourth order
moments.
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4. FINDING THE ROTATION

4.1. Second Order Statistics

The rotation can be found from any covariance matrix
No(ftﬂhe whitened observations at non-zero lag . Rewrit-
ing (5) in terms of the unitary matrix for all non-zero
lags, we define:
V7 #£0 RY(r)=UR. (1)U (8)
As R?(7) is a covariance matrix, it is Hermitian and
can be diagonalised by a unitary matrix V. Moreover,
if the eigenvalues of R (7) are distinct, the matrix V/
will be essentially unique, i.e. up to a scaling and per-
mutation of the columns. Let

VTR (1) V = diag [M, ..., ] (9)

Comparing (8) with (9) and taking into account the
essentially uniqueness of V', we conclude that U and
V are essentially equal, i.e. V = PDU. Moreover,
the elements {1, ..., \,} are a permutation of the au-
tocorrelations of the sources at lag 7. In theory, one
covariance matrix at non-zero lag is sufficient to esti-
mate the rotation. In practice, however, it is useful to
use a set of matrices as this would enhance the statis-
tical efficiency of the algorithm and prevent an unfor-
tunate choice of lags [1]. From (8), it should be clear
that the sources must have some time dependencies. If
the sources were white, R, (7) and consequently R? (1)
would be the null matrix and no additional information
would be available to estimate the rotation.

4.2. Higher Order Statistics

The cumulant matrices of the whitened observation are
defined as:

VM Q,(M):q; = Zcum {zi, 2, 21, 21y myy (10)
kL

where my,; are the elements of an arbitrary matrix M.
The cumulant matrix is simply a linear combination of
two dimensional slices of a fourth order tensor. Due
to the multilinearity and additivity property of the cu-
mulants, (10) can be written as:

VM Q. (M)=UAUT (11)
where Ay = diag{r@lu{Mul,...,f{Nu%MuN}, Kp is
the kurtosis of the pth source and u,, is the pth column
of U. Equation (11) shows that the rotation matrix
can be found as a unitary diagonaliser of the cumulant
matrices for any arbitrary matrix M. In practice, it
is suggested in [2] to use the columns of the unitary



matrix U for M, i.e. M = upug for all 1 < p,q <
N. Substituting this in (11) will yield the so called
eigenmatrices of z:

Q- (upug) = Z /{Tu,T,’upunu,,uruf (12)
r

For all p = ¢, this becomes:
Q- (upu;";) = l{pupu;"; (13)

and zero for all other indices. Jointly diagonalising the
different eigenmatrices will yield the unknown unitary
factor of the mixing matrix. If the kurtosis of the
sources are small, the elements of the eigenmatrices
contain too little information to estimate the rotation.

5. COMBINED STATISTICS
The cost function of the Weighted Combined Statistics
(WCS) algorithm is given by:

6(Via) = a2y ||diag [VT Qs (w,ul) V]|[; (14)

HOS

+ (1 — a)2 Z ||dz'ag [VTRZ (Tk) V] ||i‘
k

SOS

where diag [A] denotes the vector formed from the diag-
onal elements of A, N is the number of eigenmatrices,
K the number of covariance matrices , a2 and (1 — a)®
are the weights and ||-|| denotes the Frobenius norm.
Let

a@. (u ulT
R (a) = { 1-a) %EZ(TI)N)

for1<I< N
for N<I<L
(15)

where L = K + N, then (14) can be written as:

$(V.a) =Y ||diag V'R (@) V]|[z  (16)
l

For the sake of brevity, the dependency of R; on «
will only be indicated where necessary. Suppose that
one column of the mixing matrix is known. In the
blind beamforming scenario for example, this would be
equivalent to knowing the antenna array response to
one signal. The available column will be denoted by
a. By using the whitener from (6), one column of
the unitary matrix is found as u = Wa. The prior
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information can then be used in order to formulate the
following constraint:

((V,a) = la—v,|% (17)

where v, is the column of the estimated rotation ma-
trix V corresponding to the given column u. The
quantity ¢ (V, ) simply measures the distance between
the actual and estimated array response to the the pth
source. The semi-BSS problem can then be written as
an optimisation problem:

ma>‘</imise o (V,a) (18)
subject to

((V,a) =0

The Lagrangian function is given by:

L
L(V.a,\) =" ||diag [VTRV] 115+ My — vl
. N———

— ¢v)
»(V,a)

(19)

An optimal solution satisfying (18) can be found by us-
ing Lagrange Programming Neural Networks (LPNN)

I5].

6. THE GRADIENTS

6.1. The Cayley Transform

The optimal unitary matrix is found by adjusting the
previous estimate with a fraction of the gradient, i.e.

Vik+1=VIK+uVy L(V,a,N) (20)

where p is the adaptation gain and Vy denotes the
gradient with respect to V. The fundamental problem
with (20) is that V will not retain its unitary prop-
erty. An alternative update equation is required. The
Cayley transformation is defined as [6]:

CV):H=I-V)I+V)"* (21)

and the generalised inverse transform:

CY'H):V=(I-H){I+H™" (22)

where V' and H are respectively a unitary and a skew-
Hermitian matrix. Provided that neither (I 4+ V') nor
(I + H) are singular, (21) transforms a unitary matrix
into a skew Hermitian one and (22) reverses the trans-
formation. Let H be a real N x N skew-Hermitian
matrix with elements h;;, where h;; = 0if ¢ = j and



hij = —hj; if i # j. Define Oh;; as a small change ¢ in

element h;; and —6 in hj;. Then:
H

6—:T¢j for1<j<i<N (23)

6hij

where all the elements of the N x N matrix T;; are
zero except t;; = 1 and t;; = —1, thus Tj; is skew-

Hermitian. = The gradient of V' with respect to h;; is
given by:
ov _
=-(I+V)T; (I+H)™ (24)
Bh,-j

Let h ={h;; : 1 < j < i< N}, then (20) is changed to:

H[b+1) = HE +pVn L(V.a))  (25)
where Vy, L (V, a, A) is simply %;T‘fi forall 1 <
j < i < N. As the gradient of L(V,a,)\) will be
skew-Hermitian, H [k + 1] will be skew-Hermitian too.
At each iteration, V' [k] is transformed into H [k] us-
ing the Cayley transform. Then H [k+ 1] is found

using (25), finally, H [k + 1] is transformed back into
V [k + 1], which will be an updated version of V' [k].

6.2. Gradient of the Cost Function

Next, the gradients of the cost function ¢ (V,a) with
respect to h and « are derived. In matrix notation,
(16) can be written as:

¢(V,) =" {diag” [VTRV] diag [VTRV]} (26)

The gradient with respect to h is then given by:

9¢ (V, )

L
= 2> " diag" [VTRIV]

=1

diag [VT (R +Rf a;/h. } (27)

where % is given by (24). Differentiating ¢ (V, o)

with respect to « gives:

9¢ (V, ) SN R - T OR

e 2212 diag" [VT RV ] diag | VT ==V
(28)

where:

o 0 funi)
da | —RY(m)

for1<i<n

forn <I<L (29)

A more detailed derivation of (28), (27) and (24) can
be found in [7] or obtained from the author in writing.
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6.3. Gradient of the Constraint

When deriving the gradient of the constraint, it is use-
ful to write (17) in matrix notation:

¢(Via) =ey (F—V)' (F-V)e, (30)

where F' is the N x N matrix with the pth column of
F replaced by u and e, is a N x 1 vector with one at
the pth position and zero elsewhere. The gradient is
then given by:

9 (V,a)

>N P — H —_
e 2e, (F V)

r OV o
6hij P

(31)

The analytical gradient of ¢ (V, ) with respect to « is
very tricky. A first order approximation of the deriva-

tive is used instead:
GC(V,a)zC(V,a—I—é)—C(V,a) (32)

Oa )

where ¢ indicates a small change.

7. THE ALGORITHM

7.1. The Generic Form

Using LPNN, the rotation matrix is found by iterating
the following equations:

hislk+1) = hy [k +p ai‘i + ALK 8‘12 (33)
(27) (31)
alk+1] = ald+nor 4 A o (34
(28) (32)
AE+1] = Ak +pC(V Uf.]/) a [K]) (35)
where p, n, and p are the adaptation gains. For the

sake of brevity, the dependencies on V and « have been
onmitted, as these are obvious. The gradients in (33)
- (35) should be evaluated at V [k] and « [k] respec-
tively. At each iteration, (33) must be updated for all
the elements of h, i.e. for h;; where 1 < j <7 < N,
so that the matrix H can be constructed and trans-
formed back into the unitary domain. The bracketed
numbers under the gradients denote the number of the
corresponding equations in the text. Depending on the
available information, three different algorithms can be
formed from equations (33) - (35).

7.2. The CJUD Algorithm

In the ordinary Cayley Joint Unitary Diagonalisation
(CJUD) algorithm no a priori information is available.



Moreover, only one type of statistic is used. As u
is unknown, it is replaced by any column v, of the
estimated rotation V so that ¢ (V,«) = 0. Hence, (35)
and the last term of (33) can be ignored. For HOS, « is
set to one, so that the matrices R; in (15) will consist
of eigenmatrices only.  Alternatively, « = 0 if only
SOS are used. As « is constant, (34) can be ignored
as well so that the only required update equation is
hik+1] =h[k] + p82.

7.3. The CCJUD Algorithm

In the Constrained Cayley Joint Unitary Diagonalisa-
tion (CCJUD) algorithm, some prior information is
given in the form of a column of the mixing matrix.
As with the CJUD, the value of « is fixed according to
the use of the statistics and (34) can again be ignored.
The rotation is found by using (33) and (35).

7.4. The WCS Algorithm

The Weighted Combined Statistics (WCS) algorithm
uses a combination of higher and second order statis-
tics to estimate the mixing matrix. The weights as-
signed to the different statistics are determined by the
prior information. The matrices R; are formed using
(15). Cycling through (33), (34) and (35) will yield an
estimation of the rotation. Due to space limitations,
it is impossible to discuss the computational aspects
extensively, but two comments are in order here. Ex-
perience has shown that for best results, it is advisable
to set 1 in (34) to zero. Thus, the selection of the
weight is only determined by the constraint and not by
the cost function. Secondly, % can be estimated ef-
ficiently using the CJUD algorithm, initialising it with
V [k].

8. SIMULATIONS

In the first experiment, a comparision between the CCJUD

algorithm using prior knowledge, and the JADE algo-
rithm is done. Three artificial signals of sample length
1000 are created. The first two signals are a sine wave
and a random Gaussian sequence. The sequence a (n)
is a discrete 1.i.d signal called M.S (3) that takes its val-
ues from the set {—1,0, 3} with the respective proba-
bilities {1/ (1+ 8),(3—1)/8,1/(3(1+ B8))} . Theso
called cumulant parameter 3 is chosen so that 3 > 1.
It is easily verified that E{a} = 0, E{a*} =1 and
cum {a,a,a,a} = % — f — 2. The third signal was
chosen as M S (2.1). Thus, the last two signals are ap-
proximately non-kurtic and separation on the basis of
HOS will prove to be difficult. The signals were mixed
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with a 3 x 3 mixing matrix with elements picked from
a Gaussian distribution. No noise was added.
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Figure 1: The original second signal (top), its recon-
struction by CCJUD (middle) and by JADE (bottom)
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Figure 2: The original third signal (top), its reconstruc-
tion by CCJUD (middle) and by JADE (bottom)

Due to lack of space, the separation of the sine
wave is not shown. It was successfully reconstructed
by both algorithms. The CCJUD algorithm achieves
virtually perfect separation. Note that the separated
version of the MS (2.1) signal, middle figure in fig.2
has to be multiplied by minus one. The JADE al-
gorithm however, is unable to separate the Gaussian
signal from the M S (2.1) signal. This is hardly supris-
ing, the second signal is Gaussian and the third sig-
nal has a very small fourth order cumulant so there is
not enough information to estimate the rotation. The
PI (P) index measures the distance between P, which
is the inverse of the estimated mixing matrix multiplied
by the true mixing matrix, and a permutation matrix
[7]. The smaller the PI(P), the better the separa-



tion. The PI (P) measure for JADE and CCJUD are
2.25 and 0.05 respectively, hence the CCJUD algorithm
performs significantly better. It is unfair to compare
the performance of JADE with CCJUD, as the latter
uses some prior knowledge. However, the aim of these
graphs is to show that some prior knowledge can en-
hance performance significantly. Consider a situation
where n sources are transmitting simulataneously. If
separation is impossible, n — 1 sources can keep quiet
for a while so that the array response to one source
can be estimated. Using the CCJUD algorithm, it is
then possible to achieve complete separation. In the
second experiment, the performance of the Weighted
Combined Statistics (WSCS) algorithm is evaluated.
Three algorithms are compared. The JADEyp algo-
rithm [4] operates completely blindly and assigns equal
weights to the HOS and SOS. Similarly, the CCJUD
algorithm uses equal weights for both statistics. How-
ever, unlike the JADErp, it uses some prior informa-
tion. Finally, the WCS algorithm uses the prior infor-
mation to assign different weights to the SOS and the
HOS. The three sources used are M.S (2.2), MS (2.3)
and M S(2.4) passed through a IIR(2) filter with com-
plex conjugate poles at exp (+.7775), exp (+.67j) and
exp (£.677). Since the sources are nearly non-kurtic
and their spectral content is very similar, separation
based on either HOS or SOS alone, will not succeed.
As in the previous experiment, a 3 X 3 mixing ma-
trix is used with elements from a real Gaussian dis-
tribution. The performance measure used is the In-
terference to Signal Ratio (ISR) index, ISR;(P) =

P ||pp";’||, where pj; are the elements of P. The
ISR (P) simply measures the amount of interference
from the undesired signals that is present in the desired
signal. The smaller the ISR (P), the better the sep-
aration. The experiment was averaged over 20 trials.
A detailled discussion of fig.3 is beyond the scope of
this paper. Note however the significant improvent of
the WCS algorithm on the CCJUD algorithm despite
the fact that both use the same amount of information.
The PI (P) for JADErp, CCJUD and WCS are 0.90,
0.78 and 0.63 respectively.

9. CONCLUSION

Three novel algorithms were presented in this paper.
We first introduced an algorithm that finds a joint uni-
tary diagonaliser of a given set of matrices. It was then
shown how this can be applied to the BBS problem. A
simple modification to the CJUD algorithm permits it
to consider some prior information. Finally, the CWS
was presented, which makes use of the prior knowledge
in order to assign the weights to the statistics.
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Figure 3: The Interference to Signal Ratio of the three
signal for JADErp (striped), CCJUD (dotted) and
WCS (solid).

REFERENCES

[1] A. Belouchrani, K. Abed-Meraim, J. Cardoso, and
E. Moulines, “A blind source separation technique
using second order statistics,” IEEE Transactions
on Signal Processing, vol. 45, no. 2, pp. 434444,
1997.

[2] J. F. Cardoso and A. Soulomiac, “Blind
beamforming for non-gaussian signals,” IEE
PROCEEDINGS-F, vol. 140, pp. 362 — 370,
December 1993.

[3] J. Igual and L. Vergara, “Prior information about
mixing matrix in BSS-ICA formulation,” in ICA-
2000, pp. 123 — 126, 2000.

[4] P. P. K. R. Robert Muller and A. Ziehe, “JADE
TD; combining higher order statistics and tempo-
ral information for blind source separation (with

noise),” in ICA-99, pp. 87 — 92, 1999.

[5] S.Zhang and A. G. Constantinides, “Lagrange pro-
gramming neural networks,” IEEE Transactions on
Clircuits and Systems II: Analog Digital Signal Pro-
cessing, vol. 39, pp. 441— 452, July 1992.

[6] R. Horn and C. R. Johnson, Topics in Matriz Anal-
ysis. Cambridge University Press, 1999.

[7] M. Klajman and J. A. Chambers, “Approximate
joint diagonalisation based on the cayley transfor-
mation,” Proceedings of the IMA, Ozford Press,
2000.





