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ABSTRACT 

Most current analysis methods for functional magnetic 
resonance imaging (fMRI) data assume a priori knowledge of 
the time course of the hemodynamic response (HR) to 
experimental stimuli or events in brain areas of interest. In 
addition, they typically assume homogeneity of both the HR and 
the non-HR “noise” signals both across brain regions and across 
similar experimental events. When HRs vary unpredictably 
from area to area, or from trial to trial, different approaches are 
needed. Here we used infomax Independent Component 
Analysis (ICA) to detect and visualize variations in single-trial 
HRs in event-related fMRI data. ICA decomposition of the 
resulting BOLD data produced independent components with 
variable stimulus-locked HRs active in primary visual (V1) and 
medial temporal (MT/V5) cortices respectively. Contrary to 
expectation, in four of six subjects the HR of the V1 component 
contained two positive peaks in response to short-stimulus 
bursts, while nearly identical component maps were associated 
with single-peaked HRs in long-stimulus sessions from the same 
subject. Thus, ICA combined with single-trial visualization can 
reveal dramatic and unforeseen task-related HR variation not 
apparent to researchers analyzing the data with fixed HR 
templates. 
 

1. INTRODUCTION 
Although functional magnetic resonance imaging (fMRI) 

of blood oxygen level-dependent (BOLD) contrast allows 
localization of dynamic brain processes that occur during a wide 
range of psychological tasks [1-4], fMRI data include a complex 
mixture of signals resulting from hemodynamic, neural, 
respiratory, movement-related, temperature drift, machine-noise 
and other processes. A number of methods have been proposed 
for analyzing BOLD data. These can be categorized as 
hypothesis-driven and model-based or else exploratory and 
data-driven [5,6]. Model-based methods include ANOVA and 
correlational methods. Data-driven methods include principal 
component analysis (PCA) [7] and independent component 
analysis (ICA) [8-10].  

Model-based methods usually assume that the shapes but 
not the amplitudes of the time courses of the different processes 
that sum to create the observed BOLD signals can be reliably 
estimated prior to analysis. Typically, the time course of 
stimulus presentation or task variation is convolved with a 
gamma, Poisson or Gaussian response kernel, or else a 
combination of Fourier series are used to generate one or more 
expected hemodynamic response (HR) functions [11-13]. The 
actual time courses of every voxel or smoothed voxel region are 
then compared to the selected template(s), and statistical models 
are used to identify regions whose time courses are significantly 
correlated to the models and to determine the magnitudes of 
their model-related activation [14-16]. In addition, it is usually 
assumed that the time course of the HR is constant across 
stimulus or task events and, often, across brain areas, stimulus 
parameters, sessions and subjects.  

Hypothesis-driven methods may be problematic when the 
HR time courses of interest cannot be modeled with certainty 
prior to the analysis. Recorded fMRI signals consist of changes 
in oxygenated hemoglobin concentration both in the capillary 
bed of each local cortical area and in its venous drainage [17]. 
Since the drainage compartment may be located some distance 
from the capillary compartment, it may have a different BOLD 
time course [18-20] making it difficult to construct accurate a 
priori HR templates. Variations in HR peak latency of up to 4 s 
are also reported, without physiological explanation, in different 
regions [21]. In general, the basic model of the HR as a passive 
low-pass filter may have limited validity.  

Some research groups have therefore begun to search for 
new, more flexible template-based methods for extracting 
accurate fMRI time courses, or for data-driven methods for 
adjusting a priori HR models to the data. Williams et al. used 
orienting responses (event-related changes in heart rate, EEG 
desynchronization, eye movement, and skin conductance) to 
refine their HR model [22]. Andino et al. utilized Renyi 
numbers of time/frequency representations on clusters of voxel 
time courses to measure their signal complexity and task-related 
information content [23]. Clare et al. demonstrated an analysis 
of variance (ANOVA) method for analyzing fMRI data that 
calculates the ratio of the variance of the averaged data set to the 
variance of the unaveraged data set for each voxel in the volume 
image [24]. Voxels in regions of activation, they reasoned, 
should have a significantly higher variance ratio than those in 
regions of purely random amplitudes. Although these methods 
may use less rigid assumptions about HR wave shape and timing 
than simple correlation methods, they assume that the same HR 
is evoked in each trial, and model trial-to-trial variability as 
statistical noise.  

Although PCA, the best-known data-driven algorithm, is 
often employed to reduce the dimensionality of fMRI data, 
individual PCA components are necessarily both spatially and 
temporally uncorrelated, making them unlikely to represent 
functionally distinct brain systems. Rotation methods such as 
Varimax and Promax [25] might be used to relax the rigid PCA 
component restrictions, but their use for fMRI analysis has not 
been explored.  

Recently McKeown and colleagues [8-10] reported a less 
artificially restrictive data-driven method, ICA, for blind source 
separation of many types of activity from fMRI data based on an 
information-maximization (infomax) approach [26]. Applied to 
fMRI data, the components found by ICA are spatially 
maximally independent of one another, while their time courses 
may be highly correlated. This approach is based on the 
well-established principle of functional brain modularity 
(different parts of the brain do different things), yet is capable of 
distinguishing areas having only slightly differing time courses.  

ICA attempts to decompose the entire fMRI data set into 
component activities associated with fixed spatial distributions. 
Variability in the data is modeled as a sum of deterministic 
processes with maximally independent spatial distributions. 
McKeown et al. showed that ICA can distinguish and separate 
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activity in brain regions having consistently task-related HRs 
from those whose HRs are only transiently task-related [9]. ICA 
can also isolate other metabolic and artifactual processes, such 
as radio frequency (RF) noise, subject movements and arterial 
pulsations, that are present in the fMRI data. Because of its 
greater dimensionality and the non-Gaussian distributions of the 
derived components, ICA may have increased statistical power 
over standard correlation-based methods for determining the 
extent of task-related activity. This paper demonstrates that ICA, 
applied to event-related fMRI paradigms, can reveal the time 
courses and associated spatial locations of BOLD processes 
with novel and variable HRs, allowing detailed examination of 
HR variations across trials, sessions, sites and subjects. It 
demonstrates as well that may have unexpected variability, even 
in primary sensory areas. 

 
2. METHOD 

Subjects  
Two male and four female subjects (ages: 22 ± 3 years, 

mean ± SD) were recruited from the academic environment of 
the National Yang Ming University in Taipei, Taiwan. Each 
subject had normal or corrected-to-normal vision. Written 
informed consent was obtained from each subject prior to the 
experiment. 
Experimental Protocol  

The overview of the experimental design is given in Figure 
1. An 8-Hz flickering checkerboard visual stimulation was used 
to trigger hemodynamic responses (HRs) in visual cortical 
regions of each subject. Each 5-min experimental session 
consisted of ten 30-sec epochs beginning with a burst of visual 
stimulation (an event-related fMRI experimental design). In the 
periods between stimulus bursts, subjects were requested to fix 

their eyes on a red crosshair displayed in the center of visual 
field. Visual stimuli were presented through back projection 
from a LCD projector onto a white screen. Subjects lay on their 
backs in the bore of the scanner and viewed the screen through 
eyeglasses containing an angled mirror in front of each eye. The 
fMRI sessions were either short-stimulus (SS) sessions, in 
which stimulus burst duration was 0.5-s, or long-stimulus (LS) 
sessions in which burst durations were 3 s. Each subject 
participated in two LS and two SS sessions. Stimulus duration 
was counter-balanced over sessions and subjects to avoid order 
effects. A 30-s stimulus onset asynchrony (SOA) was chosen to 
minimize the possibility of HR overlap [27-30].  

Image Acquisition 
The fMR images in this study were obtained by a 3-Tesla 

Medspec 30/100 scanner (Bruker Medizintechnik GmbH, 
Ettlingen, Germany) at the Integrated Brain Research Unit 
(IBRU) of Taipei-Veterans General Hospital, Taipei, Taiwan. 
Five axial slices were acquired using an echo-planar imaging 
(EPI) protocol (TR = 500 ms; TE = 70 ms; flip angle = 90 
degrees; matrix = 64 × 64; FOV = 250 × 250 mm; slice thickness 
= 5 mm with 2-mm gap). For better visualization of the active 
brain areas, 256 × 256 T1-weighted images with the same slice 
position and field of view as the functional images were 
acquired at the end of the four experimental sessions. 
Data Preprocessing 

The obtained fMRI images were first subjected to a slice 
time-alignment process to minimize image intensity 
inhomogeneity arising from differences in slice image 
acquisition timing. In this process, data from individual slices 
were first interpolated in time. Then, the data were sampled at a 
single set of time points separated by the original 500-ms TR. If 
left uncorrected, the staggered acquisition times for the different 
slices might have introduced considerable variability and timing 
bias into the recovered HRs [21]. The time-realigned fMRI 
images were then stripped of off-brain voxels by using intensity 
histograms of the structural images to determine the coordinates 
of voxels lying outside the brain. This process reduced data size 
by more than 60%. Independent component analysis was then 
applied to BOLD-signal time series of within-brain voxels to 
separate maximally independent brain maps and associated 
BOLD-signal time courses. 

The ICA unmixing matrix for each fMRI session was 
computed using a binary version of the runica() routine 
(available online in MATLAB and binary form in [31]). PCA 
preprocessing was applied to reduce the dimension of training 
data set from 600 (the number of time points) to 50. The initial 
learning rate was 0.0001. Block size was 34. The complete 
procedure (including preprocessing) required 30 minutes to 
converge on a 500 MHz Pentium 4 machine. After the ICA 
training converged, (i.e., the unmixing matrix was determined 
within the pre-set tolerance), the spatially independent 
component maps were derived as in eq. (1). Each component 
map was then converted to a z-value map by subtracting its 
mean from each voxel and dividing by the standard deviation of 
the map weights. The voxels with high z values (|z| > 2) were 
considered to comprise the active component map or comprising 
the component region of activity (ROA). 
Talairach Normalization 

To visualize the ROA of each component within the 
high-resolution structural image, and to compare ROAs across 
subjects, the structural images and component maps were 
normalized to the standard Talairach space using statistical 
parametric mapping (SPM) software from the SPM99b package 
[5]. Selected active component maps were then overlaid onto the 
structural images using the slice_display() routine developed by 
Matthew Brett for SPM environment (see Figure 2). The 
coordinates in Talairach space of active brain areas were then 
obtained by locating the voxel with the largest z score in each 
ROA voxel cluster of interest. The Brodmann area(s) of the 
ROA cluster was also determined from an online atlas. 
Components with ROAs located in Brodmann areas 17, 18, or 
19 were selected for further visualization and comparison. 
BOLD-Image Plots 

To display the time course of each independent component 
in each session, we used a new visualization tool that we call the 
“BOLD-image” plot after a similar plotting method, for 
event-related EEG data visualization, the ERP-image [25,32]. 
The time course of activation of each component was first 

 

... ......... 
Epoch #1 Epoch #2 Epoch #10 

8-Hz flickering checkerboard 
visual stimuli 

Stimulus Onset = 0.5 s (short sti.)
Stimulus Onset = 3.0 s (long sti.) SOA = 30 s 

Interscan Interval = 0.5 s 

Figure 1. An event-related fMRI experimental design
was used. Visual 8-Hz flickering-checkerboard
stimuli were presented at the beginning of every
epoch. The period of presentation was 0.5 s in
short-stimulus sessions and 3 s in long-stimulus
sessions. Each session comprised ten 30-sec epochs.
Six subjects participated in 2 short-stimulus and 2
long-stimulus sessions. 
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converted to regional percent signal change (RPSC) by dividing 
the mean back-projected component time course in the 
component ROA by the mean BOLD signal level in the ROA. 
The component time course in the 10 trials was then represented 
as a series of ten normalized lines or bars variably-colored 
according to the regional percent signal change at each time 
point and stacked in time order of acquisition to form a 
BOLD-image plot (Fig 2b). For convenience, the average time 
course across the ten trials was computed and drawn below the 
BOLD image. BOLD-image plots can effectively visualize the 
variability of single voxel, region-of-interest (ROI) or 
component ROA time courses across trials from event-related 
paradigms, allowing easy detection of response variations 
across trials or sessions. 
Reproducibility within Subjects 

Within the same subject, the percentage overlap ratio (OR) 
of the ROAs of similar components in two different sessions 
was derived as 
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where N(S) is the number of elements in set S, sqrt(• ) is the 
square root, and ROA1 and ROA2 are the sets of voxels in the 
ROAs of the two components or sessions. OR can be used to 
measure, for example, the percentage of active voxels in a 
component ROA from one session decomposition that are also 
in the ROA of a component from the another session 
decomposition. Presumably, if the same brain region exhibits 
spatially coherent activity during different sessions, ICA should 
be able to find the same active component map in each session. 
Consequently, the overlap ratio can be used to estimate the 
reproducibility of the ICA results across sessions. 
Data Accounted for 

To determine the salience of a selected component k in the 
raw data, its mean back-projected time course over the ROA 
voxels in the original data space (Xk|ROA) was compared to the 
mean ROA time course in the raw data (XROA) by computing the 
percent variance accounted for by the component (PVk).  

( )
( ) 







 −
−×=

ROA

ROAkROA
k X

XX
PV

var
var

1100 |  

 (4) 
3. RESULTS 

For each session, components with strongest ROAs in 
Brodmann areas (BA) 17, 18, and 19 were selected for further 
analysis. Figure 2a shows the component ROA, Figure 2b plots 
the BOLD-image time course and Figure 2c gives the time 
courses of the 3 largest contributing components to the ROA 
mean for one component (IC28) active in BA17 (V1) in a 
long-stimulus session from Subject 1. In Figure 2c, the black 
trace shows the ROA mean time course obtained by averaging 
the time courses of the voxels within the IC28 ROA (Figure 2a). 
The red trace reveals the mean ROA time course obtained by 
back-projecting the defining component (IC28) to the raw data 
space. It accounts for 79.5% of the variance in the raw data ROA 
mean. Other components also contribute to the ROA mean, but 
not strongly, the strongest are shown in blue and green. The time 
course of the defining component (red trace) was segmented 
into ten 30-s trials, color-coded and stacked in trial order to form 
a BOLD- image plot (Figure 2b). 

Within subjects, the active maps of the components 
highlighting the activation in V1 areas were stable across 
sessions (OR was 87.2% between long-stimulus sessions and 
82.1% between long- and short-stimulus sessions), presumably, 
because the active area of primary visual cortex was the same in 
each session. However, the time courses of hemodynamic 

activity of these components differed markedly across trials, 
sessions, and stimulus types. In later trials of short-stimulus 
sessions, the V1 component time course contained two major 
peaks separated by ~17 s with varying latency, while the 
single-trial HRs for the corresponding component in 
long-stimulus sessions contained only one peak of larger 
amplitude and longer duration. As expected, the regional 
percent signal change in the component ROA was larger on 
long-stimulus sessions than short-stimulus sessions.  

 The top panel of Figure 3 shows ROAs of components 
active in area V1 for the other five subjects. The middle and 
lower panels show the corresponding BOLD-image plots for the 
short- and long-stimulus sessions, respectively. The active 
pari-calcarine regions varied slightly between subjects (possibly, 
in part, from the slightly different viewing angle for each 
subject). The BOLD-image plots, however, reveal that the HR 
time courses of the V1 components varied widely between 
subjects and within sessions, across trials. For clearer 
presentation, the BOLD-image plots in Figure 3 were smoothed 
with a vertical two-trial moving window, and were color coded 
with individually fit color scales.  

 
 

4. DISCUSSION 
We have shown that BOLD responses to simple, 

infrequent presentations of flickering checkerboard stimuli may 
have differing time courses across single trials, stimulus 
parameters, experimental sessions and subjects. To show this, 
we introduced a new method of plotting event-related BOLD 
time courses, the BOLD-image plot, which can clearly visualize 
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Figure 2 BOLD image for an independent component
localized to visual cortex. It shows: (a) region of
activity (ROA) determined by independent
component (IC) 28 from the decomposition of a
long-stimulus session of Subject 1; (b) BOLD-image
plot of IC 28 time course; and (c) ROA mean time
course by averaging the time courses of voxels in the
ROA (black trace) and the time course of IC 28 (red
trace) determined by back-projecting the ICA
component to original voxel space. 
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single-trial variations in event-related HRs. BOLD-image 
plotting should also prove useful for plotting event-related 
BOLD HRs for single voxels or any other region of interest 
(ROI). We used ICA decomposition of the data to show that: 
1. Active sensory areas may be similar across stimulus 
parameters. 

For each subject, the independent component ROAs 
activated in V1 following short and long stimulus bursts, 
determined in separate ICA decomposition for each session, 
were highly replicable within subjects but differed between 
subjects, consistent with the report of Waldvogel et al. who used 
similar stimuli and analyzed their data using co correlational 
methods [33]. 
2. HRs to simple stimuli in sensory brain areas may be 
surprisingly variable. 

Many fMRI studies have reported that changes in the 
subject performance strategy, habituation, learning or aging can 
produce larger spatiotemporal differences in the BOLD signals 
recorded from the same subject performing the same task 
[22,34]. Expected hemodynamic responses might even be 
completely missing in some trials, reducing the statistical power 
of fixed models or templates [35]. Methods based on 
assumptions that HRs are reliably evoked by each stimulus, 
such as deconvolution approaches that separate HRs from 
BOLD data using the stimulus presentation record, ignore the 
possibility that BOLD signals may not be the passive 
convolution of expected neural activity patterns with a fixed HR 
kernel. Such methods make the questionable assumptions that 
the time course of brain metabolism can be predicted from the 
stimulus or event sequence, and that the HR convolution process 
is static. 

ICA, on the other hand, makes no assumptions about 
either the shape of HRs or their consistency across trials. It does 

not rely on a convolutional model or assume that hemodynamic 
signals represent a fixed low-pass filter applied to neural activity 
levels. It is able to detect and separate functional brain areas 
with coherent BOLD time courses, even if omitted or multiple 
HRs occurs. For example, applied to our data from 
short-stimulus sessions, ICA detected V1 component HRs 
exhibiting two peaks in most trials. In these sessions, the first 
peak was more or less time-locked to stimulus onsets, while the 
second peak varied in amplitude and latency across trials and 
sessions. In long-stimulus sessions, the HR of the component 
located in the same cortical areas contained only a single peak of 
larger amplitude and longer duration. It would have been 
difficult for us to discover these phenomena by searching 
through the data using a wide variety of conceivable but 
otherwise unmotivated HR templates. Furthermore, the 
statistical power of such a search would be dissipated to its 
many degrees of freedom, making confidence in the results 
questionable. 

Based on these results, the sufficiency of the convolution 
model for sensory-driven HRs, and of results derived from it, 
should be reconsidered. At least the actual time courses of 
identified active regions should be checked using BOLD-image 
plots for variability not easily attributable to a constant noise 
background. 
3. HRs to visual stimuli can vary widely between sensory areas. 

While comparing the results in Figure 3 the time courses of 
the active V1 components differed from those of the MT/V5 
components, even within the same subject and session. In area 
V1, HRs with a first and sometimes a second peak were 
common. Time courses of MT/V5 components were far less 
distinct and regular. This difference appears compatible with the 
hierarchic organization of the visual system. In the visual 
M-pathway, feed-forward information flows from V1 through 

Figure 3 BOLD images from five subjects showing comparison between independent components with similar brain
localization. The upper block shows the component ROA map in V1 area of each subject. Middle block displays the
BOLD-image plot of the component time course of the short-stimulus session and the lower block the long-stimulus
session. 
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V2 and MT/V5 to the posterior parietal cortex. Since MT/V5 
integrates activity from other brain areas for motion detection 
[36,37], its hemodynamics might be more context dependent 
than that in V1. 
4. HRs can vary between subjects, even in primary sensory 
areas. 

Causal comparison of the active component maps, 
BOLD-image plots and averaged time courses for V1 
components in Figure 3 reveals clear between-subject HR 
variability in spatial location and time course of the active 
regions. If it is necessary for group analysis to combine results 
from different subjects, for V1 or other areas, this variability 
could diffuse the resulting mean spatial map and time course, 
leading to Type I errors. Extra caution should thus be exercised 
during subject group analysis based on map or time course 
averaging. It should also be expected that the quantity and 
quality of HR variability should increase in non-primary sensory, 
particular in frontal brain areas. 
5. HRs can vary with subject strategy changes or attention 
shifts. 

It is possible that ICA results may uncover unpredicted 
changes in the direction of attention or task strategy of the 
subject during the experiment. Although the flickering 
checkerboard stimuli we used sometimes triggered activation in 
MT/V5, in the first five trials of the short-stimulus session of 
Subject 5 (Figure 3, right column) the activation was small or 
absent. In later trials of the same session, the stimulus-evoked 
activation was more substantial, dominating the average time 
course shown below the BOLD image. This difference might 
reflect top-down influence, such as the subject paying 
increasing attention to the motion aspect of the stimulus in later 
trials. It seems probable that top-down influences may 
contribute strongly to BOLD signal variability, although 
collecting behavioral or self-report evidence to examine these 
influences may be challenging. 
Usefulness of ICA for BOLD signal decomposition 

Conventional hypothesis-driven or model-based methods 
for analyzing fMRI data require a priori knowledge of the HR 
time course, and are not suitable for finding or measuring HRs 
with unknown or variable time courses. Variable HRs might be 
produced by differences in the time course of blood drainage, by 
either deliberate or unwitting changes in subject performance 
strategy, by changes associated with learning or habituation, by 
variations in subject arousal, attention or imagination, and/or by 
other unknown hemodynamic or artifactual processes. In such 
cases (which might indeed prove to be the norm), ICA provides 
an effect data-driven method for separating the recorded BOLD 
signals into components accounting for activity of different 
brain processes, without relying on restrictive assumptions 
concerning the forms of the HR time courses or the spatial 
configurations of the active areas. 

The main spatial assumption used by Infomax ICA – that 
small brain regions with mainly coherent BOLD time courses 
have substantially separate regions of activity – appears 
physiologically reasonable and non-restrictive. However, if the 
ROA of an active functional area changes across the training 
data, as with learning, ICA may separate its activity into 
consistently-active and transiently-active components with 
adjoining ROAs, a possibility that can easily be checked by 
careful component comparison. Similar component splitting 
might occur if BOLD activity saturated the signals from the 
most active voxels in a component ROA. Thus, as with any 
analysis method, the results of ICA can only be as definitive as 
the goodness of fit between the assumptions of the method and 
the data. 
 

5. CONCLUSIONS 
We have shown that brain HRs to sensory stimuli in an 

unstructured perception task may be time varying and site-, 
stimulus- and subject-dependent. In general, the assumption that 
a fixed combination of template functions can accurately map 
task-related brain areas and extract their time courses in the 
same or different brains is questionable. Relying on 
template-based methods requires two leaps of faith. The first is 
that the temporal relationship between the task or stimulus 
sequence and brain metabolic activity is known and can be used 
to construct a response template. The second is that the brain 
hemodynamic system acts as a static and, therefore, passive 
low-pass filter with a fixed or highly constrained impulse 
response. 

The use of ICA can complement hypothesis-driven 
methods for analyzing fMRI time series because: (1) ICA does 
not rely on a priori knowledge of HR time courses and can be 
used to detect unforeseen, time varying and site dependent HRs. 
(2) ICA can be used to separate the component processes 
corresponding to task-related metabolic responses, non-task 
related physiological phenomena, and machine and movement 
artifacts [8-10]. In particular, ICA might be able to reveal 
changes in the psychological state of subjects or patients. For 
example, it should allow the characterization of changes in 
subject performance with learning or habituation. Since ICA can 
separate a wide variety of time courses contained in fMRI time 
series, it also should expand the possible types of fMRI 
experiments that can he performed and meaningfully analyzed 
and interpreted. 

The exploration of nonstationary responses with ICA 
should allow fMRI research to move beyond fixed signal plus 
noise models of BOLD dynamics, and to consider the 
relationship between BOLD signal variability and shifting 
cognitive states that depend on motivation, arousal and intent.  
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