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ABSTRACT 
Two mirror symmetric versions of the maximum entropy 
(MaxEnt) methodology are introduced and compared:  
(1) A posteriori MaxEnt Independent Component 
Analysis (ICA) H(V) was proposed by Bell, Sejnowski, 
Amari, Oja (BSAO) (early by Jutten & Herault, Comon 
and Cardoso (JHCC) in France). It is ambitious to 
factorize the unknown joint-probability density function 
(j-pdf) using the post processing algorithm involving the 
sigmoid-threshold neurons' output V(x,y)= σ([W]X(x,y)) 
of all image locations (x,y) in order to apply the pixel-
ensemble averaged synaptic weight matrix [W] learning, 
∂[W]/∂t=<∂H(V)/∂[W]>. The pixel ensemble average 
may be necessary to factorize the unknown joint-pdf 
from multi-channel data vector X(x,y). (2) A priori 
MaxEnt H(S) for independent class analysis (ica) is a 
compliment first step to the ambitious joint-pdf 
factorization based on a-posteriori MaxEnt H(V) ICA.  
Since ica is less ambitious to ICA in finding independent 
classes alone without their underlying pdf, we can derive 
from Gibb's statistics mechanics of independent classes 
of irradiation sources Sj by a priori MaxEnt H(S), which 
would be a flat equal class distribution if each were not 
constrained by the measurements by means of 
Lagrangian multipliers of force vector λλλλ i and energy 
scalar (λo -1) for each pixel: 
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Physically speaking, the long distance propagation by the 
speed of the light insures the line of sight local validity of 
a linear and instantaneous within-pixel mixture model of 
remote optical sensing. However, only the a priori 
MaxEnt H(S) ica can handle a large hyperspectral image 
data basis by the divide-and-conquer strategy without the 
pixel ensemble average that limits computationally the 
posteriori MaxEnt ICA algorithm. This strategy is 
possible because the radiation sources vector S(xo,yo) per 
pixel contribute locally to the spectral image data per 
pixel X(xo,yo)= [A]S(xo,yo), i.e. the irradiation collected 
within the foot print of the individual pixel (xo,yo) will 
not mix with other neighborhood irradiation sources that 
will only contribute to their corresponding neighborhood 
pixels. Although this is basically true for any optical 
imaging, the post processing BSAO algorithm attempts 
to de-mix all pixel data [W]X in a batch mode that make 
it not scalable to large image data basis.  Being a priori 
MaxEnt H(S) pre-processing, we can divide and conquer 
image size by applying ica pixel by pixel in real time. 
Furthermore, we have derived ab initio from it the usual 
sigmoid threshold logic S = σ(λλλλ[A]) and the Hebbian 
learning ruled ∆Aij =λλλλ iSj. We can thus conjecture any 

linear communication theorem that a linear matrix 
transform (e.g. associative memory [A] recall) between 
data X=[A]S and its independent classes under the 
constraint of comprehensive decomposition Σj Sj = 1 
must lead naturally to the coupling of sigmoid transfer 
logic and Hebbian learning.   Thus the author has coined 
the Lagrangian Constraint Neural Network (LCNN) 
since 1997. Nonlinear ICA generalization by LCNN and 
two  conjugate gradient ascents of two mirror symmetric 
MaxEnt's are indicated. 
KEYWORDS: Smart Vision, Unsupervised Learning, 
Remote Sensing, Hyperspectral, Lagrangian Constraints 
Neural Net, A Priori Maximum Entropy, Independent 
Classification Algorithm 
1. INTRODUCTION 

An important milestone of artificial neural 
network (ANN) modeling of smart vision image 
processing is the discovery of "a posteriori" MaxEnt 
unsupervised learning algorithm that validates Barrow's 
redundancy reduction principle reproducing the sparse 
edges discovered early in cat eyes by Nobel Laureates 
Hubel and Wiesel. It taught us that a minimum 
redundancy is achieved at a maximum independence, of 
which the true one happens at the maximum entropy (like 
the ocean sands being decayed independently from the 
mountain rocks near the end of maximum entropy heat 
death). ANN can solve the tough mathematical problem 
called Independent Component Analysis (ICA), i.e. to 
factorize the (unknown) joint probability density (of 
source rocks) in order to de-mix the unknown mixtures 
(of color sands, for example). While the mathematical 
models of single eye for wavelets feature extraction and 
the (supervised) principle component analysis (PCA) of 
the covariance matrix, the binocular vision is for the 
unsupervised independent component analysis (ICA) 
analysis for blind source de-mixing. ANN has been 
successfully applied to the advanced brain imaging, fn-
MRI and PET, which help eliminate any artifact and 
consequently enhance and surge the brain imaging 
experiments. The drawback of Bell-Sejnowski-Amari-
Oja (BSAO) if any is the mandated pixel ensemble 
average that prevents itself from dealing with a large 
image data basis that may have 200 M byte consisting of 
200 channels images of 100x100 pixels in the so-called 
hyperspectral. The remote sensing of weak optical signal 
is usually linear without delay and requires the 
Lagrangian Constraint new approach to be unsupervised 
because no ground truth is known except the maximum 
independent class entropy, Max H(Sj).  On the contrary, 
the brain imaging has nonlinear physiological constraints 
and their coherent dependence of various causal delays is 
of interests after the customary removal of independent 
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artifacts. We review the a-priori maximum entropy 
Lagrangian Constraint neural net model that solves pixel 
by pixel in real time the details of hyperspectral imaging 
applications. 

On board of a geo-synchronous satellite such as 
Landsat of NASA, each image pixel gathers seven 
spectral images from the visible to the far infrared, and 
can be considered as a blind mixture of radiation 
spectrums of all material present in the large ground 
footprint about 900m2.  

 
Fig. 1 Schematic diagram indicates how Bell-Sejnowski-
Amari-Oja (BSAO) ICA artificial neural network (ANN) 
weight matrix [W] learns by the ensemble of gradient 
ascent algorithm until all neuron outputs V=σ(U) are 
being squeezed to become de-correlated noise <UUT> = 
[W][A]<SST>[A]T [W]T =[I] implies for independent 
sources <SST>=[I] the discovery of knowledge 
representation [W] =[A]−1 of the external world. Thus, 
ANN helps unmix ground sources for subpixel 
composition Sj. BSAO ICA approach is a-posteriori 
MaxEnt H(V) all-pixel post-processing ANN, while 
LCNN ica approach is a-priori MaxEnt H(S) per-pixel 
pre-processing ANN suited for large data bases. Both 
implement unsupervised learning due to unknown [A]. 

2.  LAGARANGIAN CONSTRAINT NN  
Since both the objects Sj and the reflectance 

matrix Aij in Eq(1) are unknown, it may be called a blind 
source separation (BSS) or independent class analysis 

(ica). We postulate the Lagrangain constraint maximum 
entropy with Lagrangian multipliers λi to incorporate the 
measurement.  We shall refer to the double recursions for 
the double unknowns methodology as the Lagrangian 
Constraint Neural Network (LCNN). LCNN and ICA (by 
Bell and Sejnowski, 1995) Amari (1996) and Oja (1997) 
are different in the following senses. (1) LCNN 
introduced one input/hidden layer of neurons λ to form a 
neural network in Fig. 2(a) and BSAO is an output layer 
neural network in Fig. 2(b). (2) LCNN maximize the a 
priori entropy H(S) as pre-processing ica and BSAO 
maximize the a posterior entropy H(V) as post-
processing ICA. (3) LCNN ica has two learning 
functions in conjugate dual spaces λλλλ and S, instead of 
one in BSAO ICA. 
 
 
 
 
 
 
 

 
 
 

Fig. 2: Network structures of Pre-processing Lagrangian 
Constraint NN versus Post-processing BSAO ICA ANN 

In LCNN, we define a constraint entropy function of 
ground radiation sources S to be maximized with the 
Lagrangian constraint multipliers as follows: 
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    (1) 
so that the unknown number N of independent classes is 
nevertheless normalized in the probability sense. 
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While the number of photons must be real and non-
negative, classes of photons associated with different 
ground irradiation objects may be independent in the 
instantaneous time scale of remote sensing measurement 
and shall therefore satisfy the Shannon entropy formula 
of the combinatorial formula of non-interacting billiard 
balls of different RGB colors---Log{(R+G+B)!/R!G!B!} 
being approximated in the Sterling factorial product.  
The normalized condition Eq.(2) replaces the traditional 
winner-take-all classification scheme for the macro-scale 
remote sensing per pixel. Our model is new in the sense 
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that the Hopfield-like quadratic energy is unknown 
reflectance Matrix [Aij] (between the irradiating Sj source 
neurons and constraint λi force neurons in the Hilbert 
inner product space), which is not self-dual and can learn 
their equilibrium without a teacher as follows. 
(i) We could derive the Hebbian bilinear learning from 

the first principle of a priori maximum source 
entropy formalism, but we could equivalently use 
the standard Lagrangian virtual displacement of 
measurement data δX departing the local Maximum 
Entropy H(S) with the constraint λi force neurons.  

 

(ii) 
j

j

S
H

dt

dX

∂
∂=  of Eq.(5) to update [A] 
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which gives a local Hebbian learning between the 
Lagrangian multipliers force λλλλ neurons and the source 
neurons S.   
 (iii) Scalar 0λ  is the Helmhotz free energy computed at 
the local maximum of entropy as follows 
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Setting Eq(5) to zero, the real non-negative formalism of 
unknown source neurons is obtained and parameterized 
in term of unknown reflectance matrix [A] and 
Lagrangian force neuron λλλλ to be determined; 
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Substituting Eq.(6) into the normalization Eq. (2) we 
have derived the Helmhotz free energy as the logarithmic 
of the Partition function Eq(7) in Statistical Mechanics 
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 (iv) Without assumption, we have derived rigorously the 
sigmoid threshold logic function at the fixed point of 
local maximum entropy Eq(6) from the coupling between 
λλλλ force neurons from data to independent source neurons 
S for general linear optimum communication: 
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(v) We can expand the virtual displacement of 
measurement data Xj in terms of Lagrangian multipliers, 
force neuron λλλλ ,  in a Taylor series at the first order: 
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Evaluate explicitly the partial differentiation using Eq(3) 
for X and Eq(6) for S in the straightforward manner, we 
obtain the standard perturbation relationship between the 
force and the displacement: 
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where, as it should be, the Helmhotz free energy λo is 
identified to be related to the displacement vector X:   
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We shall now carry out double recursion for two 
unknowns, namely Sj and Aij, as follows: 
I. Initialization: 

(i) Give trial Lagrangian multipliers λi
o( ) , 

(ii) Either substitute the in-situ laboratory measurement 
∆ )(o

ijA  = λjSj ∆t Eq(4) Hebbian-like, or 

approximate )( )()()( known
j

known
i

o
ij XXA σ≈ +50% random 

noise to break the rank-one singularity, where σ is the 
sigmoid function of neuron transfer logic functions. 
II. The first recursion: 
(iii) compute λo from Eq. (7), 

(iv) solve Eq. (6) )(o
jS  

(v) compute )(o
iX  from Eq. (3) and thus  
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(vi) compute ∆λk
o( )  from inverting Eq. (10), 

 λ λ λk k
o

k
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III. The Second Recursion 
(viii) compute new estimate of the improved reflectance 
matrix )1(

ijA  from Eq.(4) is possible because the inner 

product with known λ i
( )1 . Update [A(1)] by the improved 

virtual displacement 
j

j

S
H

dt

dX

∂
∂=  of Eq.(5) for reaching 

the maximum source entropy the right hand side 
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=1, and transpose all to the left hand side except [Α]λλλλ at 
right-hand side, and solve for [A] by the rank-one 
associative memory outer product formula. 
IV. Go Back to Step II. 

The detail coding of the algorithm published in 1997 
is enclosed for reader convenience in the Matlab source 
code in Appendix A. Other than the questionable rank-
one associative memory approximation of the exact 
eigen-vector decomposition, the Matlab algorithm seems 
to be fast and stable to implement the Lagrangian 
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Constraint Neural Network (LCNN) model and find Sj 
and  Aij for a known )(known

jX per pixel.  

Furthermore, we have derived ab initial from it the 
usual sigmoid threshold logic S = σ(λλλλ[A]) and the 
Hebbian learning ruled ∆Aij =λλλλ iSj. We can thus 
conjecture a general theorem of communication by 
independent classes that the linear matrix transform 
(associative memory [A] recall) between data X=[A]S 
and independent classes under the constraint of 
comprehensive but unknown class decomposition Σj Sj = 
1 must lead naturally by a priori MaxEnt H(S) the 
biological sigmoid transfer logic and Hebbian learning. 
4.  EXPERIMENTS COMPARISON 

We wish to compare LCNN ica and BSAO ICA 
solutions.  LCNN approach can be adopted for searching 
anomalies, as revealed as singularity of jump of single 
source among neighborhood multiple sources. Note that 
the top bright spots show perhaps Poisson sun glint 
density in the Mediterranean Sea (top) where the strip 
pattern sensor noise are due to not-yet-cool down TM 
Sensors as NASA concurred afterwards. Tel-Avis City is 
located at low left. At the lower right the desert is 
covered with some cloud patterns, sand dome patterns 
and perhaps mixed with some interesting non-periodic 
man-made objects in the sand. We note that the Matlab 
can code the post-processing BSAO pixel-ensemble 
average algorithm to compute the relatively small data of 
Landsat imageries directly so that we can compare them 
herewith, but it could not solve the 200 hyperspectral 
images of million pixels.  Only its mirror symmetric 
sibilant method can solve the hyperspectral images pixel-
by-pixel on flight in real time.  This might be important 
message for a large system brain imaging experiments. 
5 HYPERSPECTRAL LCNN RESULTS 

We are now confident and ready to apply 
LCNN to hyperspectral image remote sensing. 
Hyperspectral has 200 channel image data collected by 
NASA using U2 airplane, but the spectral available to us 
is ranging from 0.5 micron to short/middle Infrared (2 to 
3 micron) only. They are divided into 200 channels. 
Black color means no energy present at the particular 
channel.  Figure 6 shows the unsupervised and 
comprehensive decomposition results of LCNN; Figure 
(a) shows playa and also in figure (b), but there is a very 
strong interference in (b), the bright (red) double 
component spot in the right turns out to be a vehicle 
parked on the grass.  Shade and cinder show in figure (c). 
Playa is also showed in (d), rhyolite shows in figure (d) 
and (e), and vegetation shows in (d), (e) and (f). The 
output of Lagrangian-constrained Neural Network 
(LCNN) shows that the black color means no 
contribution to the specific object-class geometry-
statistics. The color migrates from picture to picture 
indicating different statistics of soil, tree, and volcano 
rocks.  The circle points are the unknown man-made 
objects detected within the Rock Mountain volcano area. 

The a priori MaxEnt H(S) with the 
measurement constraint is powerful to solve the unknown 
independent classes of irradiation source from 200 
component vector data X =[A]S, and 100% of total but 
unknown number of components that varies from pixel-
to-pixel. However, in contrast, the BSAO ICA assumes 
the a-posteriori MaxEnt H(V) of neuron post-processing 
output components V =sigmoid([W]X) where X=[A]S, 
and the required ICA pixel-ensemble average does not 
permit running 200 images, each 200x200 pixels on PC 
at the same time. Seldom is the case that a real world 
application, e.g. optical remote sensing, satisfies the 
linear and instantaneous ICA matrix vector model. 
6. CONCLUSION  
The important realization of  the statistical mechanical 
approach to the independent classification analysis (ica) 
namely LCNN based on a priori MaxEnt H(S)  is to 
circumvent the tough mathematics challenge to be able to 
uniquely factorize the unknown joint-pdf  from multi-
channel mixture data alone, namely ICA based on a 
posteriori MaxEnt H(V), if only we wish to know is at 
the first the classes, but not yet the underlying pdf to 
characterize/identify the classes to be done subsequently 
with supervision once we have them sorted.  We can then 
compute the ica images their histogram and moments for 
solving the inverse pdf problem from moments. To 
demonstrate the versatility of Lagrangian constraint 
calculus, we consider nonlinear measurement constraints: 
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Fig. 3 Original NASA Landsat multi-spectral images (visible to near, mid, long IR) over a Mediterranean town with some 
cloud covering over desert area (lower right). No sensor pattern noise or fine structure or hidden objects are revealed in the 

energy spectrum domain.  Visual classification however prefers the geometry texture statistics than energy spectrum. 
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Fig. 4 A Posteriori MaxEnt H(σ([W]X) ICA (BSAO algorithm) reveals vividly in the pixel-ensemble average 
method the strip pattern sensor noise in the Mediterranean sea (upper half) due to unsettled cooling pattern (as 
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NASA concurred after our discovery in 1997), fine structure along shoreline, Tel-Avis City in the lower left hand 
side); cloud, sand pattern & interesting non-periodic structure in the desert (lower right hand side). 
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Fig. 5  A Priori MaxEnt H(S) independent class analysis  (ica) is to find classes not yet the pdf of classes by means of 
statistical-mechanics Lagrangain Constraint Neural Network (LCNN) approach that allow us to solve pixel-by-pixel the 
decomposition of Landsat 7 spectral images (Fig.3) into density-images for the percentage of independent density (100%=bright, 
0%=black ) without neighborhood average. (A Priori MaxEnt ica is less ambitious than a posteriori MaxEnt ICA for the 
factorization of the underlying joint-pdf that must utilize the pixel-ensemble average over all images shown in Fig. 4). Results are 
similar to Fig.4 that gives us the confidence of applying the pixel-by-pixel LCNN to the hypersepctral of 200 channel per pixel 
that BSAO is intractable for 200 images of 200x200 pixels.  
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(a)      (b) a bright object indicate by a circle aside 

 
(c)                                                                                        (d) 

 
(e)                                                                                    (f) 

 
 
 
Fig. 6 Sample results of LCNN of AVIRIS hyperspectral 200 channels which are unsupervised with unknown 

[A] using Lagrangian Constraint Neural Network (LCNN) approach.  Figure (a) shows playa and also in figure (b), 
but there is also a very strong interference in (b), the bright spot in the right.  Shade and cinder show in figure (c). 
Playa is also showed in (d), rhyolite shows in figure (d) and (e), and vegetation shows in (d), (e) and (f). The full 200 
channel results is given by Szu & Ren in SPIE 2001 Orlando Wavelet Applications 
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APPENDIX Lagrangian Constraint Neural 

Network Algorithm 
 

MATLAB code for unsupervised Lagrangian 
Constraint NN algorithm 

 
 function maxent 
% Lagrangian Constraint NN 
solving
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% Pixel-by-pixel divide-and-conquer non-ensemble 
approach to large data set 
% H. Szu and C. Hsu, “Landsat Spectral Unmixing à 
la Superresolution of Blind Matrix Inversion by  
% Constraint MaxEnt Neural Nets,” in Wavelet 
Applications IV, Proc. SPIE, 3078, 1997, 147-160. 
 
 [X,Y]=meshgrid(1:7,1:7); 
 
% initialization 
lambda = [0.6228, 0.6337, 0.4577, 0.1095, 0.7252, 
0.01752, 0.4128]; % Lagranging force randomly 
initialized 
X0 = [0.5382, 0.1023, 0.6404, 0.4358, 0.0278, 
0.2425, 0.3299]; % data given per single pixel 
 
 
A = X0'*sigmoid(X0) + rand(7,7)*0.5; % add 
small noise to avoid rank 1 singularity 
A = normalize(A); % normalize at unit hyper 
sphere 
figure(1);mesh(A);title('Initial weights'); 
 
cnt=40; %iteration steps 
 
for i=1:cnt 
 lambda0 = log(sum2(exp(-A'*lambda'))); 
 %based on unit constraint (Eq.(9)) 
   S = exp(-A'*lambda'-lambda0); %Endmember  
       
   % update Lagranging forces 
   X = A*S; % Linear mixing constraint 
   dX = X0' - X; 
   z=X0'*X0-A*((S*ones(size(S'))).*A); 
   if abs(det(z))<=1e-10 
      dlambda = zeros(size(dX)); 
   else 
      dlambda = inv(z)*dX; 
   end 
   lambda = lambda + dlambda'; 
    
   % update weight a la Hopfield-like ( dXi/dt = 
dH/dSi ) 
   A = (dX+log(S)-

lambda0)*(lambda./sum2(lambda.^2));  % Inverse 
AM matrix,  
                                                                                              
% e.g. if y=[A]x then [A]=y*x'/|x|^2 
   A = normalize(A); % normalize each row 
vector producing unit hyper sphere 
    
   % for display purpose 
   SS(:,i)=S; 
end 
x=(1:cnt); 
figure(2); 
plot(1,X0(1),'x',1,X0(2),'x',1,X0(3),'x',1,X0(4),'x',1,X
0(5),'x',1,X0(6),'x',.1,X0(7),'x',x,SS(1,:),'b',x,SS(2,:),'k
',x,SS(3,:),'r',x,SS(4,:),'g',x,SS(5,:),'m',x,SS(6,:),'c',x,S
S(7,:),'y');title('Endmember in percentage'); 
figure(3); 
mesh(A); title('Normalized spectral reflectance 
matrix'); 
function y = sigmoid(x) 
y = 1./(1+exp(-x)); 
function A=normalize(A) 
for i=1:size(A,1) 
   A(1,:) = A(1,:)./sqrt(sum2(A(1,:).^2));  
end 
function Y=sum2(X) 
Y=sum(sum(X)); 
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