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ABSTRACT

Sinusoidd interferences are found in ultrasonic signas when
we try to characterize a material, as for example interferences
coming from PC cards. We are interested in obtain a robust
method that cancels these interferences preserving the
waveform of the signa. A Blind Source Separation BSS
method to extract these sinusoids is presented in this paper.
We will get so many linear mixtures of the backscattering
echo of the material and the sinusoids as we need from
different pulse responses of the material.*

1. INTRODUCTION

The problem of Blind Source Separation (BSS) condsts on
recovering a set of independent source signas from linear
mixtures of them [1]. We will introduce an gpplication of BSS
to cancel sinusoidal interferences that are found in measures
of ultrasonic signas. In this case we will call the source Sgnals
the pulse response of the material and the sinusoids.

We are interested in characterize different kinds of material
gtarting from its ultrasonic scattering [2]. We use a transducer
with centra frequency 44 kHz. At these frequencies, some
interferences are found in the back scattered echo signals.
These interferences should be cancelled preserving the
waveform of the echo of the materia to avoid their effect on
different parameter estimates to be used in materia
characterization, as centroid frequency, probability densty
parameters...

We are looking for an dgorithm that extracts the pulse
response of the materia without the harmonic interferences.
Thus, a BSS method can be applied, supposing that pulse
response and harmonics are datisticaly independent. An
additiona advantage of BSS isiits robustness, so it works very
wdl in low S/N ratios and when the interference is insde the
frequency band where most of signd energy is found.

In BSS we need s many mixtures as sgnas we want to
recover. We only have one sensor, so only one signa can be
recorded. However, we will obtain the different linear
mixtures recording severa pulse responses, as we will explain
in Section 2, where the problem is mathematically formulated.

! Supported by CICYT under grant DPI2000-0619-C03-01 and
Polytechnic University of Vaencia

591

In Section 3 a BSS solution is presented in a general case and
in Section 4 asmulated example is shown.

2. PROBLEM STATEMENT

The mixture modd is.

N-1
Y(O) =)+ B @
i=1
where y(t) is the received sgnd, x(t) the backscattering echo
and Be!™9) =1 . N- 1 thesnusoidal interferencesto
be cancelled. BSS definition supposes that there are at least S0
many linear independent mixtures as sources we want to
recover, i.e, we need a mixture modd with N mixtures.
Usudly to register N signals we need N sensors. However in
our case we can relax this condition because a prior
information about the origina sources is available. This fact
brings about that we can implement our agorithm with only
one sensor, what would reduce highly the cost of a red
implementation. In Figure 1, we show graphicaly how we can
overcome the problem of having only one sensor.
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Figure 1. Source dgnas corresponding to two
recordings of 400 samples each one. Up, the
backscattering echo; down, the interference signd.
The echo is the same in the two recordings because of
invariance; the interference is a sinusoid with different
phase in each recording. This fact assures that the
mixing metrix is not singular.



We can record several responses from the material atthe
same location by taking advantage of the pulse train emitted to
the material.

Supposing material response is time invariant, we record the
responseto atrain of N pulses, with period T ,

N

N-1 )
y(t) =x(t) + 4 Be/Y ) 0LtET
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N-1 .
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y(t) = x(t) + Néilae“Wi“q” (N-DT £t£ NT
i=1

This set of equations is expressed in matrix notation as:

y, (0= X(t) + & B eM kI givwia 3

i=1
for k=1..N, OE£t£T, where Y, (t) isthe responseto
the kth pulse emitted: y,(t) = x(t) + %{lla gl WitHai)
i

(k- DT £t £KT . As we can see, the interference effect in
different pulse responses is a phase change in the harmonics,
S0 we can obtain at least N pulse responses to modd the

BSS problem, which can be written as (we will drop the time
variable)

éy, u él 1 1 uéex, u
e, u é jwqT wn.m UE, U
eyz l;':g e e e ueng (4)
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where X; is the backscattering echo of the materia that we
want to characterize, and X;,; j =1...N- 1 the j-th signd

of frequency W, x;,, =B;e ™" we will cl A the
metrix obtained in (4). In BSS terminology this matrix is
usualy referred as the mixing matrix.

Findly, a BSS problem can be s&t. The aim is to recover the
source signds X; j=1...N provided they can be
consdered datigtically independent, starting from the inear
mixtures of them y; j =1... N . Normally, in BSS nothing is
supposed about the mixing matrix A, only that it is not singular.
It is clear from (4) that this condition is saidfied if
w,T® 2pk with k integer; i.e. the pulse train and the
interferences periods must not be multiple numbers.

3. BSSMLE SOLUTION

For the sake of smplicity we will suppose in the rest of the
paper that we have only an interfering signal.

The problem is reduced to:
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Traditiond BSS solutions do not suppose anything about the
mixing matrix A or about the source signds digribution. It has
an important advantage: if our mode is not correct (for

example X, is not a pure tone probably it would have

harmonics or any kind of noise) it works well. Obvioudy, the
problem is that we are not using al the information that we
have.

The difference among the BSS agorithms is the way they
approximate the independence assumption and he way they
solve numericdly the problem, i.e, the optimization process.
What dl of them have in common is the use of higher order
datigics, some of them explicitly and other via non linear
functions. For more details see [3], [4], [5], [6], [7], [8] and the
references there indicated.

We will present in this Section the Maximum Likelihood
Estimate MLE, using the structure of the matrix A, the prior
information about one of the sources (the interference) and a
Gram-Charlier gpproximation of the probabiity dendty
function (pdf) of the backscattered echo of the materid [9].

Firg of al, we observe from (5) that the matrix A is not
invertible if w;T =2pk, so we will suppose that
w, Tt 2pk . Secondly, T is known (is the time between
pulses), so the only remaining unknown parameter is the
frequency w.

If we decompose the complex exponential source in its redl
and imaginary part, the problem is expressed as.
v @ 1 0 0o
e, u : u
éyza:gt cosw,T  gnw,T ngzu 6)
gysf € cos2w,T sn2w,TgexsH
where x; is the regponse of the materid,
X, =dn(wot +q) and X3 =cos(wWyt+q). In (6) we fix
the order of the sources, removing the permutation
indetermination of the problem (the order the sources are
recovered).
The MLE is the vaue of wW; tha maximizes the (log)-
likdihood function of the dgnds VYi,Y»,,Y3. For N
independent observations,

MLE N .

W, =ag rvva( a Py (YK);wq) ™
1 k=1

The joint paf p,, (y) is obtained from the pdf of the sources

and from the mixing matrix A.

The pdf of the observed signals with respect to the pdf of the

sourcesis:
At y)

py(y)=p|detA| ®



Imposing the independence assumption of the sources,

px1x2x3 (Xl’ X2 ' XS) = p)(l (Xl) xpxz (XZ) pr3 (XS) ’ (8)
can be factorized in terms of the pdf of the sources and the
unknown parameter W, .

If we do not consder any prior information about the pdf of
the sources, a approximation of them is necessary. They can
be approximated in different ways [8]. In particular, we will
use the Gram-Charlier expansion [9] for the response of the
material and the histogram for the sinusoida interference, so

pxl(xl) —cxe ><12/2><

)
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where n®, m* are the third and fourth order and c is a
normalizing congtant.

Thanks to the multilinearity property of the atitics, we can
obtain the moments of x sarting from the moments of the
mixed Sgnelsy.

AplA o A«lh par

B o (1)
K a Aip qu Akr A1shpqrs
pars
where (M, My ), (hyj,h ) are the third and fourth order
moments of x and y respectively.
We are only interested in the moments of equation (9), so we

have to compute just the third and fourth order margina
moments for the echo source.

The resulting dgorithm can be summarized:
1 Edimate the moments of the observed sgnas
hijk'hijkl

2. Compute the moments (11) of the material-response
source as afunction of the frequency w; .

3. Approximate the pdf of the sources (9), (10) with
the expression obtained in the previous step and the

rdation x = A"ty .

4. Obtan thew;tha maximizes the (log)-likdihood
function (7).

3.1 General solution

In our mixing mode (6), the mixing matrix has been expressed
as a function of only one parameter. But, in this modd,
conddering the assumption of unit-variance sources, the
mixing matrix only expresses the particular case in which the
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sources are mixed with the same power. In the general case,
the mixing matrix canbe defined as:

é/s/N 1 0 u

1]
&/S/N  cosw,T snw,Tq ()]

>

> (D

&/SIN  cosaw,T sn 2w,T4

where the SN ratio is defined as the reation
power echo

power snusoid

considered.

. In our previous modd a SN=0 dB was

In this case, ingtead of obtain the MLE of the two parameters,
the SN ratio and the frequency w; , we will obtain directly the

sources via a two steps BSS solution. It is known that the
mixing matrix can be decomposed as the product of a
whitening L and an orthogonal matrix Q [1]. The whitening
matrix L can be obtained in severd ways [10]. Supposed that
the whitening step is carried out, for the 2x2 problem the
orthogona matrix Q is a Givens matrix parameterized by the
rotation angle:

écosa dnau
Q=g _ a 13
& sSna cosaj

Because imposing genera independence among dl three
sources is equivaent to pairwise independence for the BSS
problem [1], we iteratively obtain the Givens matrix for the
2x2 problem, considering only two of three sources in every
sweep. When the agorithm converges, the origina sources are
recovered. As we mentioned before, we will impose the order
of the sources, so the permutation indetermination of the BSS
problem is removed. We will assume that the order of the
sources is corresponding with the mixing matrix (12), i.e. the
first source is the response of the materia, the second the sine
and the third the cosine function. In every 2x2 problem the
sources will be approximated by the Gram Charlier expansion
(9) when the source is the response of the materia or (10)
when it is the Sine or cosine functions.

4. RESULTS

A dmple dmulation was carried out with a computer
generated interference and a real backscattered echo
registered in a no interference environment. However we will
not use any prior information about the material response in
our agorithm.

The origina sources are:
Sourcex1. The normalized backscattered echo of a material.
Sources x; and xs. Synthetic normalized interference

generated  with a  computer xzzﬁén%ng,
e

a

X3 = «/Ecosge4—p ng. This interference simulates the case
el25 g



of an interference of frequency 80 KHz, sampled a 5 MHz.
This interference is in the same frequency band of the other
source.

The period of the train of pulses is T=0.2 ms, satisfying the
condition W, T * 2kp . In order to reduce the computational
time we will use only N=801 samples from the origina record
length (samples between 2200 and 3000). In this case, the
restriction is adso satisfied
w;N =80.52=12.82x2p * 2kp .

The mixing matrix is (12) with SIN=1/3. In the Figure 2, the
mixtures are shown and, in the Figure 3, we can observe the
recovered signals. As we can see the response of the materia
and the Snusoidal signals are separated.

mixtures
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Figure 2. Mixed sgnds.

Recovered signals

) 100 200 300 400 500 600 700 800
) 100 200 300 400 500 600 700 800

200

ARy O N S

0 100 300 400 500 600 700 800

Figure 3. Recovered signals.

5. CONCLUSIONS

A new application of BSS has been presented. We have
shown how sinusoidd interferences can be eiminated from the
backscattering echo of a materia that we want to
characterize. One advantage of BSS method is that we do not
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need to impose any goecid condition on the sources nor on the
mixing process. In particular, we have obtained the ML
solution via a GramCharlier approximation of the pdf of the
SOUrces.

In order to obtain a genera solution a two step gpproach has
been carried out, considering the prior information about the
interference signals.

Thanks to this prior we have shown how the problem of
having more sources than sensors can be overcome, 0 a
cheaper rea implementation can be developed.

In fact, our approach can be generdized fa dl pulsed
systems, like those in radar and sonar areas, where using the
characteristics of the sgnals involved and their periodicity,
BSS techniques can be applied easily where the generd
restriction of “as many mixtures as sources’ is not a problem
even if the number of sensors and mixtures are different,
because we can obtain as many mixtures as we need with
only one sensor if some conditions are satisfied (in our case,
that the phase change of the snusoida signa between emitted
pulsesis not amutiple of 2p ).
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