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ABSTRACT 

Sinusoidal interferences are found in ultrasonic signals when 
we try to characterize a material, as for example interferences 
coming from PC cards. We are interested in obtain a robust 
method that cancels these interferences preserving the 
waveform of the signal. A Blind Source Separation BSS 
method to extract these sinusoids is presented in this paper. 
We will get so many linear mixtures of the backscattering 
echo of the material and the sinusoids as we need from 
different pulse responses of the material.1 

1. INTRODUCTION 

The problem of Blind Source Separation (BSS) consists on 
recovering a set of independent source signals from linear 
mixtures of them [1]. We will introduce an application of BSS 
to cancel sinusoidal interferences that are found in measures 
of ultrasonic signals. In this case we will call the source signals 
the pulse response of the material and the sinusoids. 

We are interested in characterize different kinds of material 
starting from its ultrasonic scattering [2]. We use a transducer 
with central frequency 44 kHz. At these frequencies, some 
interferences are found in the back scattered echo signals. 
These interferences should be cancelled preserving the 
waveform of the echo of the material to avoid their effect on 
different parameter estimates to be used in material 
characterization, as centroid frequency, probability density 
parameters...  

We are looking for an algorithm that extracts the pulse 
response of the material without the harmonic interferences. 
Thus, a BSS method can be applied, supposing that pulse 
response and harmonics are statistically independent. An 
additional advantage of BSS is its robustness, so it works very 
well in low S/N ratios and when the interference is inside the 
frequency band where most of signal energy is found. 

In BSS we need so many mixtures as signals we want to 
recover. We only have one sensor, so only one signal can be 
recorded. However, we will obtain the different linear 
mixtures recording several pulse responses, as we will explain 
in Section 2, where the problem is mathematically formulated.  

                                                             
1 Supported by CICYT under grant DPI2000-0619-C03-01 and 
Polytechnic University of Valencia 

In Section 3 a BSS solution is presented in a general case and 
in Section 4 a simulated example is shown.  

2. PROBLEM STATEMENT 

The mixture model is: 
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where y(t) is the received signal, x(t) the backscattering echo 

and 11)( −=+ NieB iitj
i Kθω  the sinusoidal interferences to 

be cancelled. BSS definition supposes that there are at least so 
many linear independent mixtures as sources we want to 
recover, i.e., we need a mixture model with N mixtures. 
Usually to register N signals we need N sensors. However in 
our case we can relax this condition because a prior 
information about the original sources is available. This fact 
brings about that we can implement our algorithm with only 
one sensor, what would reduce highly the cost of a real 
implementation. In Figure 1, we show graphically how we can 
overcome the problem of having only one sensor. 

 

 

 

 

 

 

 

 

 

Figure 1. Source signals corresponding to two 
recordings of 400 samples each one. Up,  the 
backscattering echo; down, the interference signal. 
The echo is the same in the two recordings because of 
invariance; the interference is a sinusoid with different 
phase in each recording. This fact assures that the 
mixing matrix is not singular.  
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We can record several responses from the material at the 
same location by taking advantage of the pulse train emitted to 
the material. 

Supposing material response is time invariant, we record the 
response to a train of N pulses, with period T ,  
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This set of equations is expressed in matrix notation as: 
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for TtNk ≤≤= 0,1K , where )(ty k is the response to 

the k-th pulse emitted: ∑
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kTtTk ≤≤− )1( . As we can see, the interference effect in 
different pulse responses is a phase change in the harmonics, 
so we can obtain at least N  pulse responses to model the 
BSS problem, which can be written as (we will drop the time 
variable) 
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where 1x is the backscattering echo of the material that we 

want to characterize, and 111 −=+ Njx j K  the j-th signal 

of frequency jω ,
)(

1
jjtj

jj eBx θω +
+ = . We will call A the 

matrix obtained in (4). In BSS terminology this matrix is 
usually referred as the mixing matrix. 

Finally, a BSS problem can be set. The aim is to recover the 
source signals Njx j K1=  provided they can be 

considered statistically independent, starting from the linear 
mixtures of them Njy j K1= . Normally, in BSS nothing is 

supposed about the mixing matrix A, only that it is not singular.  
It is clear from (4) that this condition is satisfied if 

kTi πω 2≠  with k  integer; i.e. the pulse train and the 
interferences periods must not be multiple numbers. 

3. BSS-MLE SOLUTION 

For the sake of simplicity we will suppose in the rest of the 
paper that we have only an interfering signal. 

The problem is reduced to: 
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Traditional BSS solutions do not suppose anything about the 
mixing matrix A or about the source signals distribution. It has 
an important advantage: if our model is not correct (for 
example 2x  is not a pure tone; probably it would have 
harmonics or any kind of noise) it works well. Obviously, the 
problem is that we are not using all the information that we 
have. 

The difference among the BSS algorithms is the way they 
approximate the independence assumption and the way they 
solve numerically the problem, i.e., the optimization process. 
What all of them have in common is the use of higher order 
statistics, some of them explicitly and other via non linear 
functions. For more details see [3], [4], [5], [6], [7], [8] and the 
references there indicated. 

We will present in this Section the Maximum Likelihood 
Estimate MLE, using the structure of the matrix A, the prior 
information about one of the sources (the interference) and a 
Gram-Charlier approximation of the probability density 
function (pdf) of the backscattered echo of the material [9]. 

First of all, we observe from (5) that the matrix A is not 
invertible if kT πω 21 = , so we will suppose that 

kT πω 21 ≠ . Secondly, T is known (is the time between 
pulses), so the only remaining unknown parameter is the 
frequency 1ω .  

If we decompose the complex exponential source in its real 
and imaginary part, the problem is expressed as: 
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where x1 is the response of the material, 
)sin( 02 θω += tx and )cos( 03 θω += tx . In (6) we fix 

the order of the sources, removing the permutation 
indetermination of the problem (the order the sources are 
recovered). 

The MLE is the value of 1ω  that maximizes the (log)-

likelihood function of the signals 321 ,, yyy . For N 
independent observations, 
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The joint pdf )(yyp is obtained from the pdf of the sources 

and from the mixing matrix A. 

The pdf of the observed signals with respect to the pdf of the 
sources is: 
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Imposing the independence assumption of the sources, 
)()()(),,( 321321 321321

xpxpxpxxxp xxxxxx ⋅⋅= , (8) 

can be factorized in terms of the pdf  of the sources and the 
unknown parameter 1ω . 

If we do not consider any prior information about the pdf of 
the sources, a approximation of them is necessary. They can 
be approximated in different ways [8]. In particular, we will 
use the Gram-Charlier expansion [9] for the response of the 
material and the histogram for the sinusoidal interference, so 
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where 43 , µµ  are the third and fourth order and c is a 

normalizing constant. 

Thanks to the multilinearity property of the statistics, we can 
obtain the moments of x starting from the moments of the 
mixed signals y. 
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where ( ijkµ , ijklµ ), ( ijklijk ηη , ) are the third and fourth order 

moments of x and y respectively. 

We are only interested in the moments of equation (9), so we 
have to compute just the third and fourth order marginal 
moments for the echo source. 

The resulting algorithm can be summarized: 

1. Estimate the moments of the observed signals 

ijklijk ηη ,  

2. Compute the moments (11) of the material-response 
source as a function of the frequency 1ω . 

3. Approximate the pdf of the sources (9), (10) with 
the expression obtained in the previous step and the 

relation yAx 1−= . 

4. Obtain the 1ω that maximizes the (log)-likelihood 
function  (7). 

 

3.1 General solution 

In our mixing model (6), the mixing matrix has been expressed 
as a function of only one parameter. But, in this model, 
considering the assumption of unit-variance sources, the 
mixing matrix only expresses the particular case in which the 

sources are mixed with the same power. In the general case, 
the mixing matrix can be defined as: 
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where the S/N ratio is defined as the relation 

sinusoidpower  
echopower  

. In our previous model a S/N=0 dB was 

considered.  

In this case, instead of obtain the MLE of the two parameters, 
the S/N ratio and the frequency 1ω , we will obtain directly the 
sources via a two steps BSS solution. It is known that the 
mixing matrix can be decomposed as the product of a 
whitening L and an orthogonal matrix Q [1]. The whitening 
matrix L can be obtained in several ways [10]. Supposed that 
the whitening step is carried out, for the 2x2 problem the 
orthogonal matrix Q is a Givens matrix parameterized by the 
rotation angle: 
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Because imposing general independence among all three 
sources is equivalent to pairwise independence for the BSS 
problem [1], we iteratively obtain the Givens matrix for the 
2x2 problem, considering only two of three sources in every 
sweep. When the algorithm converges, the original sources are 
recovered. As we mentioned before, we will impose the order 
of the sources, so the permutation indetermination of the BSS 
problem is removed. We will assume that the order of the 
sources is corresponding with the mixing matrix (12), i.e. the 
first source is the response of the material, the second the sine 
and the third the cosine function. In every  2x2 problem the 
sources will be approximated by the Gram-Charlier expansion 
(9) when the source is the response of the material or (10) 
when it is the sine or cosine functions. 

4. RESULTS 

A simple simulation was carried out with a computer 
generated interference and a real backscattered echo 
registered in a no interference environment. However we will 
not use any prior information about the material response in 
our algorithm.  

The original sources are: 

Source x1. The normalized backscattered echo of a material. 

Sources x2 and x3. Synthetic normalized interference 

generated with a computer 
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of an interference of frequency 80 KHz, sampled at 5 MHz. 
This interference is in the same frequency band of the other 
source. 

The period of the train of pulses is T=0.2 ms, satisfying the 
condition πω kT 21 ≠ . In order to reduce the computational 
time we will use only N=801 samples from the original record 
length (samples between 2200 and 3000). In this case, the 
restriction is also satisfied 

ππω kN 2282.1252.801 ≠⋅== . 

The mixing matrix is (12) with S/N=1/3. In the Figure 2, the 
mixtures are shown and, in the Figure 3, we can observe the 
recovered signals. As we can see the response of the material 
and the sinusoidal signals are separated. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Mixed signals. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Recovered signals. 

5. CONCLUSIONS 

A new application of BSS has been presented. We have 
shown how sinusoidal interferences can be eliminated from the 
backscattering echo of a material that we want to 
characterize. One advantage of BSS method is that we do not 

need to impose any special condition on the sources nor on the 
mixing process. In particular, we have obtained the ML 
solution via a Gram-Charlier approximation of the pdf of the 
sources. 

In order to obtain a general solution a two step approach has 
been carried out, considering the prior information about the 
interference signals. 

Thanks to this prior we have shown how the problem of 
having more sources than sensors can be overcome, so a 
cheaper real implementation can be developed. 

In fact, our approach can be generalized for all pulsed 
systems, like those in radar and sonar areas, where using the 
characteristics of the signals involved and their periodicity, 
BSS techniques can be applied easily where the general 
restriction of “as many mixtures as sources” is not a problem 
even if the number of sensors and mixtures are different, 
because we can obtain as many mixtures as we need with 
only one sensor if some conditions are satisfied (in our case, 
that the phase change of the sinusoidal signal between emitted 
pulses is not a multiple of π2 ).  
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