Weight adjusted tensor method for blind separation
of underdetermined mixtures of nonstationary
sources: Abstract

Petr Tichavsky' and Zbynék Koldovsky'>
(The whole paper is submitted for publication elsewhere.)

Abstract

We propose a novel algorithm to blindly separate an instantaneous linear underdetermined mixture of nonsta-
tionary sources. The separation is based on the assumption that the sources are piecewise stationary with a different
variance in each block. It proceeds in two steps: (1) estimating the mixing matrix, and (2) computing the optimum
beamformer in each block to maximize the signal-to-interference ratio of each separated signal with respect to the
remaining signals. In simulations, performance of the algorithm is successfully tested on blind separation of 16
speech signals from 9 linear instantaneous mixtures of these signals.

I. THE PROPOSED METHOD
Assume that the received signal X can be written as

X=AS (dxN) (1)

where the mixing matrix A has the size d X r, r > d, and the source matrix S contains r independent
sources, stored in rows. Next, assume that the signals can be partitioned into M blocks (epochs). In each
block, the separated sources have zero mean and a fixed variance. Let Dy, — that is, the (k, f)th element
of a matrix D — denote the variance of the fth signal in the kth block. The length of each block is
N; = N/M and we assume, for simplicity, that it is an integer. Let Ry denote the theoretical covariance
matrix of the mixture in the kth block. Then

R =) DisA. fAT; )
f=1
where A. ; is the fth column of the matrix A. The set of the M covariance matrices represents a three
way tensor of the dimension (M, d, d)

T
f=1
Here, 0 represents a parameter vector that consists of all elements of the matrices A and D. The tensor
is written as a sum of r rank-one tensors and by definition, the tensor rank is equal at most r. There are
three modes, two of which are equal to A, and the third mode, D, has nonnegative elements.
Traditional tensor decomposition methods seek for the decomposition of the tensor by minimizing the
mean square fit
=) 2 ) 2
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However, in our statistical model, the estimated tensor elements are mutually correlated, and the mini-
mization of the criterion in (4) is not statistically optimum. We are able to prove that the asymptotically
optimum criterion which should replace (4) is

Q:(8) = > Ry (Ri — Ri(0))R; ' (Ry — Ry,(6))] (5)

where tr(-) denotes the trace of a matrix, assuming that the covariance matrices Ry, are invertible. More
generally, we can write

tr[Ci(Ry — Ri(0))Cr(Ry, — Ry,(9))] (6)

NE

Q3(0) =

k=1

where the matrices C;, are chosen as C;, = (f{k —|—€I)‘1 with a suitable small positive constant € to maintain
regularity of the criterion under all circumstances. Note that in the special case C; = ... = Cy; =1 the
criteria (4) and (6) coincide.

In order to maintain nonnegativity of the factor D in the tensor decomposition in (3), we suggest to
follow the method from [2] and propose to minimize an augmented criterion

Q4(0) = Q3(0) + az [Z log Dy.s + M log (Z Aif)

f=1 Lk=1

Here, « is a positive parameter which starts from an initial value (e.g., 1) and is decreased gradually
towards zero during the optimization. The criterion in (7) has the advantage that if a column in mode A
is multiplied by a constant and the corresponding column in D is divided by the same constant squared,
the criterion is not affected.

Optimization of the criterion in (7) can proceed using the following steps.

1) Initialize the algorithm by the outcome of SOBIUM by Lathauwer [1].

2) Make the elements of the factor matrix D positive (take an absolute value or add a constant).

3) Iterate (until convergence is achieved) the Levenberg-Marquardt (LM) algorithm

AO = (W + )~ '¢

(7

where W is the Hessian of the criterion (7), £ is its gradient, and p is a positive parameter that is
gradually modified by the technique. After each five steps of the LM algorithm, decrease ¢ and «
to one half of their current respective values.
Once the model parameters A and D are estimated, the individual signals in S are estimated using a
MVDR beamformer in each block separately.

II. SIMULATIONS
A. Artificial data obeying the model

Four artificial signals of the length NV = 10000 partitioned into M = 10 epochs (blocks) of equal length
were generated as independent zero mean Gaussian random variables with variances D,,;, where m is
the index of the epoch and k is the index of the signal. The variances versus m and k& were taken as
variables in Fig. 1 . The variances were normalized so that > = D,,; = 1 for all k. Note that three of the
variances were set close to zero at some epoch, but it never happens that all but one signal is active, as
some other separation methods assume.

The data were mixed in three observed channels via a mixing matrix with columns A. ; = [1, cos(¢y), sin(¢x)]”
where (o1, 02, 3, ¢4) = (0,7/4,7/2,37/4).

The data were generated repeatedly in 500 independent trials, mixed together and analyzed by the
proposed algorithm. The outcome of the algorithm was sorted to fit the orders and the signs of the original
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Fig. 1. Variances of the artificial signals in the ten epochs.

TABLE 1
MEAN SQUARE ANGULAR ERROR OF COLUMNS OF A [DB]

component no. 1 2 3 4
UDSEP -28.0 -294  -264 -348
SOBIUM -248 -23.77 214 -325

signals. Quality of the separation was measured by the mean square angular error (MSAE) of columns of
the estimated mixing matrix from their true counterparts. The MSAE of the proposed algorithm and the
MSAE of SOBIUM are summarized in Table 1. We note that the performance of UDSEP significantly
(by 2.3 - 5.7 dB) exceeds the performance of SOBIUM.

B. Acoustic (speech) data separation

In this subsection, the set of 16 speech utterances of the length 8.375 s sampled at 16 kHz, normalized
to have zero mean and unit variance, are taken as the original sources S. The 9 x 16 mixing matrix is
defined as by its columns of the form A.; = [1,cos ¢y, cos2¢y, . .., cos 8¢,]T, where ¢ are auxiliary
angles ¢, = km/17, k =1,...,16. The SIR of the original signals in the mixture vary between -10 and
-20 dB.

The mixture X = AS is processed by UDSEP with M = 90 blocks. This means that the length of
each block was 93 miliseconds. Variances of angular error of columns of the mixing matrix vary between
-20 and -34 dB, while variances of SOBIUM vary between -4.4 dB and -27.7 dB. The latter variances
are uniformly worse by at least 5.7 dB.

Output variance of the separated signals vary between 1.5 and 11.8 dB. The separated signals were
understandable to a human ear. The mixture, the separated signals, and p-code of the separating procedure
were posted on the Internet [3].
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