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Sparse representation & BSS

Blind Source Separation & Sparse Representation

x = H s

H is K × P, underdetermined: K < P

Sparse representation: Columns hn ∈ D, known dictionary

BSS: H unknown

• s sparse
• s not sparse
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Statistical approach

Blind identification of linear mixtures

Linear mixtures:
x = H s

If s` statistically independent, we have the core equation:

Ψ(u) =
P∑

`=1

ϕ`(uTH)

Take 3rd derivatives at point u:

Tijk(u) =
P∑

`=1

Hi` Hj` Hk` C```(u) (1)

At u = 0 ý symmetric decomposition of Tijk [HOS]
At u 6= 0 ý [Taleb, Comon-Rajih, Yeredor]
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Tensors: General items

Pierre Comon LVA/ICA – Sept. 2010 4 / 43
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Notation

Arrays and Multi-linearity

A tensor of order d is a multi-linear map:

S∗1 ⊗⊗⊗ . . .⊗⊗⊗S∗m → Sm+1 ⊗⊗⊗ . . .⊗⊗⊗Sd

Once bases of spaces S` are fixed, they can be represented by
d-way arrays of coordinates

ý bilinear form, or linear operator: represented by a matrix
ý trilinear form, or bilinear operator: by a 3rd order tensor.
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Notation

Multi-linearity

Compact notation

Linear change in contravariant spaces:

T ′ijk =
∑
npq

AinBjpCkqTnpq

Denoted compactly
T ′ = (A,B,C) · T (2)

Example: covariance matrix

z = Ax⇒ Rz = (A,A) · Rx = A RxAT
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Definitions

Decomposable tensor

A dth order “decomposable” tensor is the tensor product of d
vectors:

T = u⊗⊗⊗ v⊗⊗⊗ . . .⊗⊗⊗w

and has coordinates Tij ...k = ui vj . . . wk .

may be seen as a discretization of multivariate functions
whose variables separate:

t(x , y , . . . , z) = u(x) v(y) . . . w(z)

Nothing else but rank-1 tensors, with forthcoming definition
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Definitions

Example

Take v =

(
1
−1

)
Then v⊗⊗⊗ 3 def

= v⊗⊗⊗ v⊗⊗⊗ v =

[
1 −1 −1 1
−1 1 1 −1

]
This is a “decomposable” symmetric tensor → rank-1

..........................

..........................

..........................

..........................

w
ww
w

w
ww w

blue bullets = 1, red bullets = −1.
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Definitions

From SVD to tensor decompositions

Matrix SVD, M = (U,V) ·Σ, may be extended in at least two
ways to tensors

Keep orthogonality: Orthogonal Tucker, HOSVD

T = (U,V,W) · C

C is R1 × R2 × R3: multilinear rank = (R1,R2,R3)

Keep diagonality: Canonical Polyadic decomposition (CP)

T = (A,B,C) · L

L is R × R × R diagonal, λi 6= 0: rank = R.
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Exact Canonical Polyadic (CP)
decomposition
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CP definition

Canonical Polyadic (CP) decomposition

Any I × J × · · · × K tensor T can be decomposed as

T =

R(T )

∑
q

λq u(q)
⊗⊗⊗ v(q)

⊗⊗⊗ . . .⊗⊗⊗w(q)

ý “Polyadic form” [Hitchcock’27]

The tensor rank of T is the minimal number R(T ) of
“decomposable” terms such that equality holds.

May impose unit norm vectors u(q), v(q), . . . w(q)
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CP definition

Hitchcock

Frank Lauren Hitchcock
(1875-1957)

[Courtesy of L-H.Lim]

Claude Elwood Shannon
(1916-2001)
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CP definition

Towards a unique terminology

Minimal Polyadic Form [Hitchcock’27]

Canonical decomposition [Weinstein’84, Carroll’70,
Chiantini-Ciliberto’06, Comon’00, Khoromskij, Tyrtyshnikov]

Parafac [Harshman’70, Sidiropoulos’00]

Optimal computation [Strassen’83]

Minimum-length additive decomposition (AD) [Iarrobino’96]

Suggestion:

Canonical Polyadic decomposition (CP) [Comon’08, Grasedyk,
Espig...]

CP does also already stand for Candecomp/Parafac [Bro’97,
Kiers’98, tenBerge’04...]
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CP definition

Psychometrics

Richard A. Harshman

(1970)
J. Douglas Carroll

(1970)
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CP definition

Uniqueness: Kruskal 1/2

The Kruskal rank of a matrix A is the maximum number kA, such
that any subset of kA columns are linearly independent.

Pierre Comon LVA/ICA – Sept. 2010 15 / 43
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CP definition

Uniqueness: Kruskal 2/2

Sufficient condition for uniqueness of CP
[Kruskal’77, Sidiropoulos-Bro’00, Landsberg’09]:

Essential uniqueness is ensured if tensor rank R is below the
so-called Kruskal’s bound:

2R + 2 ≤ kA + kB + kC (3)

or generically, for a tensor of order d and dimensions N`:

2R ≤
d∑

`=1

min(N`,R) − d + 1

ý Bound much smaller than expected rank:
∃ a much better bound, in almost sure sense
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CP definition

Rank-3 example 1/2

Example

T = + 22 = +

= + + 2

blue bullets = 1, red bullets = −1.
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CP definition

Rank-3 example 2/2

Conclusion: the 2× 2× 2 tensor

T = 2

[
0 1 1 0
1 0 0 0

]
admits the CP

T =

(
1
1

)⊗⊗⊗ 3

+

(
−1

1

)⊗⊗⊗ 3

+ 2

(
0
−1

)⊗⊗⊗ 3

and has rank 3, hence larger than dimension
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Approximate Canonical Polyadic (CP)
decomposition
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Motivation

Why need for approximation?

Additive noise in measurements

Noise has a continuous probability distribution

Then tensor rank is generic

Hence there are often infinitely many CP decompositions

ý Approximations aim at getting rid of noise, and at restoring
uniqueness:

Arg inf
a(p),b(p),c(p)

||T −
r∑

p=1

a(p)⊗⊗⊗b(p) . . .⊗⊗⊗ c(p)||2 (4)

But infimum may be reached for tensors of rank > r !

Pierre Comon LVA/ICA – Sept. 2010 20 / 43
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Border rank

Border rank

T has border rank R iff it is the limit of tensors of rank R, and not
the limit of tensors of lower rank.
[Bini’79, Schönhage’81, Strassen’83, Likteig’85]

rank > R

+

x

+

+

+

+
++
+

rank ≤ R
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Border rank

Example

Let u and v be non collinear vectors. Define T0 [Comon et al.’08]:

T0 = u⊗⊗⊗u⊗⊗⊗u⊗⊗⊗ v + u⊗⊗⊗u⊗⊗⊗ v⊗⊗⊗u + u⊗⊗⊗ v⊗⊗⊗u⊗⊗⊗u + v⊗⊗⊗u⊗⊗⊗u⊗⊗⊗u

And define sequence Tε = 1
ε

[
(u + ε v)⊗⊗⊗ 4 − u⊗⊗⊗ 4

]
.

Then Tε → T0 as ε→ 0

ý Hence rank{T0} = 4, but rank{T0} = 2

Pierre Comon LVA/ICA – Sept. 2010 22 / 43
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Border rank

Ill-posedness

Tensors for which rank{T } < rank{T } are such that the
approximating sequence contains several decomposable tensors
which

tend to infinity and

cancel each other, viz, some columns become close to collinear

Ideas towards a well-posed problem:

Prevent collinearity or bound columns.

Pierre Comon LVA/ICA – Sept. 2010 23 / 43
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Existence

Remedies

1 Impose orthogonality of columns within factor matrices
[Comon’92]

2 Impose orthogonality between decomposable tensors
[Kolda’01]

3 Prevent tendency to infinity by norm constraint on factor
matrices [Paatero’00]

4 Nonnegative tensors: impose decomposable tensors to be
nonnegative [Lim-Comon’09] → “nonnegative rank”

5 Impose minimal angle between columns of factor matrices
[Lim-Comon’10]
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Nonnegativity constraint: example
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Fluo

Fluorescence Spectroscopy 1/3

An optical excitation produces several effects

Rayleigh diffusion

Raman diffusion

Fluorescence
At low concentrations, Beer-Lambert law can be linearized
[Luciani’09]

I (λf , λe , k) = Io
∑

`

γ`(λf ) ε`(λe) ck,`

ý Hence 3rd array decomposition with real nonnegative
factors [Bro’97].
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Fluo

Fluorescence Spectroscopy 2/3

Mixture of 4 solutes (one concentration shown)
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Fluo

Fluorescence Spectroscopy 3/3

Obtained results with R = 4
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Approximate CP decomposition:
Coherence constraint
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Coherence

Coherence

Definition: [Donoho’03, Gribonval’03, Candès’07]
let A a matrix with unit-norm columns, ap.

µA = max
p 6=q
|〈ap, aq〉| (5)

this “coherence of A” is used in Sparse Representation theory
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Existence: coercivity

Existence

Best rank-R approximate under angular constraint

Proposition: [Lim-Comon’2010]
Let L diagonal, and A, B and C have R unit norm columns.
If R < [µAµBµC ]−1, then:

inf
A,B,C

||T − (A,B,C) · L||

is attained.
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Uniqueness

Uniqueness: Back to Kruskal

Lemma: (spark) [Gribonval’03]

kA ≥
1

µA
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Uniqueness

Uniqueness

Proposition: [Lim-Comon’10]
If T = (A,B,C) · L, with λp 6= 0 for 1 ≤ p ≤ R, A, B, C
matrices with unit norm columns, and:

2R + 2 ≤ 1

µA

+
1

µB

+
1

µC

(6)

then T has a unique CP decomposition of rank R, up to unit
modulus scalar factors (ρA, ρB , ρC ), ρAρBρC = 1.

Hence it suffices that one µ is small, not every
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Angular constraint: example
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MIMO

Antenna Array Processing

Transmitter

Receiver
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MIMO

Narrow band model in the far field

Modeling the signals received on an array of antennas
generally leads to a matrix decomposition:

Tij

p

=
∑
q

aiq sjq

hpq

i : space q: path, source A: antenna gains
j : time S: transmitted signals

But in the presence of additional diversity, a tensor can be
constructed, thanks to new index p
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MIMO

Possible diversities in Signal Processing

space

time

space translation (array geometry)

time translation (chip)

frequency/wavenumber (nonstationarity)

excess bandwidth (oversampling)

cyclostationarity

polarization

finite alphabet

...
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Geometry

Space translation diversity (1/2)
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Geometry

Space translation diversity (2/2)

Aiq: gain between sensor i and source q
Hpq: transfer between reference and subarray p
Sjq: sample j of source q
βq: path loss, dq: DOA, bi : sensor location

Tensor model (NB far field) [Sidiropoulos’00]

Reference subarray: Aiq = βq exp( ω
C bT

i dq)

Space translation (from reference subarray):

βq exp( ω
C [bi + ∆p]T dq)

def
= Aiq Hpq

Trilinear model:

Tijp =
∑
q

Aiq Sjq Hpq

p: index of subarray
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Geometry

Meaning of coherence

1 Unconstrained joint source estimation & localization
[Sidiropoulos’2000] (ill-posed if approximate)

2 Coherence-constrained joint source estimation & localization
[Lim-Comon’2010]

time diversity: µA → cross correlation
space diversity: µB , µC → angular separation
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Yet other unaddressed topics

Unaddressed topics

spread spectrum communications
brain inverse problems
medical imaging (MRI)
NL filtering
noise reduction
compression (Tensor trains...)
probability
hyperspectral imaging
structured tensors
convolutive mixtures
nonnegative factors
...
Algorithms
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Why use tensors

QUIZ: Why use tensors?

Main reason: essential uniqueness
ý Identifiability recovery, up to scale-permutation

Sometimes: powerful deterministic approaches

Secondary reason: more sources with fewer sensors
ý Matrices A, B, C may have more columns than rows
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Why use tensors

Other perspectives

Ignorance is the necessary condition for
human being happiness.
Anatole France (1844-1924)

Only when the last tree has died, the last river
has been poisoned and the last fish has been
caught will we realize that we cannot eat money.
Cree proverb
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